Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
112 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
39 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
5 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

D2M2N: Decentralized Differentiable Memory-Enabled Mapping and Navigation for Multiple Robots (2310.07070v2)

Published 10 Oct 2023 in cs.RO

Abstract: Recently, a number of learning-based models have been proposed for multi-robot navigation. However, these models lack memory and only rely on the current observations of the robot to plan their actions. They are unable to leverage past observations to plan better paths, especially in complex environments. In this work, we propose a fully differentiable and decentralized memory-enabled architecture for multi-robot navigation and mapping called D2M2N. D2M2N maintains a compact representation of the environment to remember past observations and uses Value Iteration Network for complex navigation. We conduct extensive experiments to show that D2M2N significantly outperforms the state-of-the-art model in complex mapping and navigation task.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. E. Parisotto and R. Salakhutdinov, “Neural map: Structured memory for deep reinforcement learning,” arXiv preprint arXiv:1702.08360, 2017.
  2. Z. Ravichandran, L. Peng, N. Hughes, J. D. Griffith, and L. Carlone, “Hierarchical representations and explicit memory: Learning effective navigation policies on 3d scene graphs using graph neural networks,” in 2022 International Conference on Robotics and Automation (ICRA).   IEEE, 2022, pp. 9272–9279.
  3. A. Francis, A. Faust, H.-T. L. Chiang, J. Hsu, J. C. Kew, M. Fiser, and T.-W. E. Lee, “Long-range indoor navigation with prm-rl,” IEEE Transactions on Robotics, vol. 36, no. 4, pp. 1115–1134, 2020.
  4. P. Mirowski, R. Pascanu, F. Viola, H. Soyer, A. J. Ballard, A. Banino, M. Denil, R. Goroshin, L. Sifre, K. Kavukcuoglu, et al., “Learning to navigate in complex environments,” arXiv preprint arXiv:1611.03673, 2016.
  5. F. Chen, J. D. Martin, Y. Huang, J. Wang, and B. Englot, “Autonomous exploration under uncertainty via deep reinforcement learning on graphs,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2020, pp. 6140–6147.
  6. G. Shi, I.E. Rabban, L. Zhou, P. Tokekar, “Communication-aware multi-robot coordination with submodular maximization”, 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 8955-8961). 2021.
  7. T. Hu, F. Gama, T. Chen, W. Zheng, Z. Wang, A. Ribeiro, and B. M. Sadler, “Scalable perception-action-communication loops with convolutional and graph neural networks,” IEEE Transactions on Signal and Information Processing over Networks, vol. 8, pp. 12–24, 2022.
  8. E. Tolstaya, F. Gama, J. Paulos, G. Pappas, V. Kumar, and A. Ribeiro, “Learning decentralized controllers for robot swarms with graph neural networks,” in Conference on robot learning.   PMLR, 2020, pp. 671–682.
  9. F. Schilling, J. Lecoeur, F. Schiano, and D. Floreano, “Learning vision-based flight in drone swarms by imitation,” IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 4523–4530, 2019.
  10. E. Tolstaya, J. Paulos, V. Kumar, and A. Ribeiro, “Multi-robot coverage and exploration using spatial graph neural networks,” in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2021, pp. 8944–8950.
  11. M. Ishat-E-Rabban, P. Tokekar, “Failure-resilient coverage maximization with multiple robots”, IEEE Robotics and Automation Letters, vol. 6(2), pp. 3894-3901, 2021.
  12. M. Rabban, M. Ali, M. Cheema, T. Hashem, “The Maximum Visibility Facility Selection Query in Spatial Databases”, 27th ACM Sigspatial International Conference on Advances in Geographic Information Systems, pp. 149–158, 2019.
  13. Q. Li, F. Gama, A. Ribeiro, and A. Prorok, “Graph neural networks for decentralized multi-robot path planning,” 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 11 785–11 792, 2020.
  14. Q. Li, W. Lin, Z. Lin, and A. Prorok, “Message-aware graph attention networks for large-scale multi-robot path planning,” IEEE Robotics and Automation Letters, vol. 6, no. 3, pp. 5533–5540, 2021.
  15. A. Tamar, Y. WU, G. Thomas, S. Levine, and P. Abbeel, “Value iteration networks,” in Advances in Neural Information Processing Systems, D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, Eds., vol. 29.   Curran Associates, Inc., 2016.
  16. S. M. LaValle, “Rapidly-exploring random trees : a new tool for path planning,” The annual research report, 1998.
  17. L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Probabilistic roadmaps for path planning in high-dimensional configuration spaces,” IEEE transactions on Robotics and Automation, vol. 12, no. 4, pp. 566–580, 1996.
  18. P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic determination of minimum cost paths,” IEEE Transactions on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.
  19. A. Stentz, “Optimal and efficient path planning for partially known environments,” in Intelligent unmanned ground vehicles.   Springer, 1997, pp. 203–220.
  20. A. Khan, C. Zhang, N. Atanasov, K. Karydis, V. Kumar, and D. D. Lee, “Memory augmented control networks,” arXiv preprint arXiv:1709.05706, 2017.
  21. S. Gupta, J. Davidson, S. Levine, R. Sukthankar, and J. Malik, “Cognitive mapping and planning for visual navigation,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 2616–2625.
  22. J. Masci, U. Meier, D. Cireşan, and J. Schmidhuber, “Stacked convolutional auto-encoders for hierarchical feature extraction,” in International conference on artificial neural networks.   Springer, 2011, pp. 52–59.
  23. R. A. Howard, “Dynamic programming and markov processes.” 1960.
  24. P. Anderson, A. Chang, D. S. Chaplot, A. Dosovitskiy, S. Gupta, V. Koltun, J. Kosecka, J. Malik, R. Mottaghi, M. Savva, et al., “On evaluation of embodied navigation agents,” arXiv preprint arXiv:1807.06757, 2018.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com