Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Cross-cap defects and fault-tolerant logical gates in the surface code and the honeycomb Floquet code (2310.06917v2)

Published 10 Oct 2023 in quant-ph, cond-mat.mes-hall, and cond-mat.str-el

Abstract: We consider the $\mathbb{Z}_2$ toric code, surface code and Floquet code defined on a non-orientable surface, which can be considered as families of codes extending Shor's 9-qubit code. We investigate the fault-tolerant logical gates of the $\mathbb{Z}_2$ toric code in this setup, which corresponds to $e\leftrightarrow m$ exchanging symmetry of the underlying $\mathbb{Z}_2$ gauge theory. We find that non-orientable geometry provides a new way the emergent symmetry acts on the code space, and discover the new realization of the fault-tolerant Hadamard gate of 2d $\mathbb{Z}_2$ toric code on a surface with a single cross-cap, dubbed a non-orientable toric code. This Hadamard gate can be realized by a constant-depth local unitary circuit modulo non-locality caused by a cross-cap. Via folding, the non-orientable surface code can be turned into a bilayer local quantum code, where the folded cross-cap is equivalent to a bi-layer twist terminated on a gapped boundary and the logical Hadamard only contains local gates with intra-layer couplings. We further obtain the complete logical Clifford gate set for a stack of non-orientable surface codes. We then construct the honeycomb Floquet code in the presence of a single cross-cap, and find that the period of the sequential Pauli measurements acts as a $HZ$ logical gate on the single logical qubit, where the cross-cap enriches the dynamics compared with the orientable case. We find that the dynamics of the honeycomb Floquet code is precisely described by a condensation operator of the $\mathbb{Z}_2$ gauge theory, and illustrate the exotic dynamics of our code in terms of a condensation operator supported at a non-orientable surface.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.