Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

On symmetry adapted bases in trigonometric optimization (2310.05519v2)

Published 9 Oct 2023 in math.OC and math.AG

Abstract: The problem of computing the global minimum of a trigonometric polynomial is computationally hard. We address this problem for the case, where the polynomial is invariant under the exponential action of a finite group. The strategy is to follow an established relaxation strategy in order to obtain a converging hierarchy of lower bounds. Those bounds are obtained by numerically solving semi-definite programs (SDPs) on the cone of positive semi-definite Hermitian Toeplitz matrices, which is outlined in the book of Dumitrescu [Dum07]. To exploit the invariance, we show that the group has an induced action on the Toeplitz matrices and prove that the feasible region of the SDP can be restricted to the invariant matrices, whilst retaining the same solution. Then we construct a symmetry adapted basis tailored to this group action, which allows us to block-diagonalize invariant matrices and thus reduce the computational complexity to solve the SDP. The approach is in its generality novel for trigonometric optimization and complements the one that was proposed as a poster at the ISSAC 2022 conference [HMMR22] and later extended to [HMMR24]. In the previous work, we first used the invariance of the trigonometric polynomial to obtain a classical polynomial optimization problem on the orbit space and subsequently relaxed the problem to an SDP. Now, we first make the relaxation and then exploit invariance. Partial results of this article have been presented as a poster at the ISSAC 2023 conference [Met23].

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.