Stationary trajectories in Minkowski spacetimes (2310.04359v2)
Abstract: We determine the conjugacy classes of the Poincar\'e group $\mathrm{ISO}+(n,1)$ and apply this to classify the stationary trajectories of Minkowski spacetimes in terms of timelike Killing vectors. Stationary trajectories are the orbits of timelike Killing vectors and, equivalently, the solutions to Frenet-Serret equations with constant curvature coefficients. We extend the $3+1$ Minkowski spacetime Frenet-Serret equations due to Letaw to Minkowski spacetimes of arbitrary dimension. We present the explicit families of stationary trajectories in $4+1$ Minkowski spacetime.
- Letaw J R 1981 Phys. Rev. D 23 1709–1714
- Frenet F 1852 J Math Pures Appl 437–447 URL http://eudml.org/doc/233946
- Serret J A 1851 J Math Pures Appl 193–207 URL http://eudml.org/doc/235002
- Jordan C 1874 C. R. Acad. Sci., Paris 79 795–797 ISSN 0001-4036
- Unruh W G 1976 Phys. Rev. D 14 870–892
- Bunney C R D and Louko J 2023 Class. Quant. Grav. 40 155001 (Preprint 2303.12690)
- Fewster C J, Juárez-Aubry B A and Louko J 2016 Class. Quant. Grav. 33 165003 (Preprint 1605.01316)
- Takagi S 1986 Prog. Theor. Phys. Supp. 88 1–142
- DeWitt B S 1979 Quantum Gravity: The New Synthesis General Relativity: An Einstein Centenary Survey ed Hawking S W and Israel W (Cambridge: Cambridge University Press) pp 680–745
- Carroll S M 2019 Spacetime and Geometry: An Introduction to General Relativity (Cambridge University Press)
- Beardon A F 1983 The Geometry of Discrete Groups 1st ed (Springer New York, NY)
- Letaw J R and Pfautsch J D 1980 Phys. Rev. D 22 1345–1351
- Neumann P M 2011 The mathematical writings of Évariste Galois (European Mathematical Society) 1st ed
- Hawking S W and Ellis G F R 2023 The Large Scale Structure of Space-Time Cambridge Monographs on Mathematical Physics (Cambridge University Press)
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.