Localized Modes in the IR Phase of QCD (2310.03621v2)
Abstract: Infrared (IR) dimension function $d_\text{IR}(\lambda)$ characterizes the space effectively utilized by QCD quarks at Dirac scale $\lambda$, and indirectly the space occupied by glue fields. It was proposed that its non-analytic behavior in thermal infrared phase reflects the separation of QCD system into an IR component and an independent bulk. Here we study the ``plateau modes" in IR component, whose dimensional properties were puzzling. Indeeed, in the recent metal-to-critical scenario of transition to IR phase, this low-dimensional plateau connects the Anderson-like mobility edge $\lambda_\text{IR}=0$ in Dirac spectrum with mobility edges $\pm \lambda_\text{A}$. For this structure to be truly Anderson-like, plateau modes have to be exponentially localized, implying that both the effective distances $L_\text{eff} \propto L\gamma$ and the effective volumes $V_\text{eff} \propto L{d_\text{IR}}$ in these modes grow slower than any positive power of IR cutoff $L$. Although $\gamma=0$ was confirmed in the plateau, it was found that $d_\text{IR}\approx 1$. Here we apply the recently proposed multidimension technique to the problem. We conclude that a plateau mode of pure-glue QCD at UV cutoff $a !=! 0.085\,$fm occupies a subvolume of IR dimension zero with probability at least 0.9999, substantiating this aspect of metal-to-critical scenario to a respective degree.
- A. Alexandru and I. Horváth, Phys. Rev. D 100, 094507 (2019), arXiv:1906.08047 [hep-lat] .
- A. Alexandru and I. Horváth, Phys. Rev. Lett. 127, 052303 (2021), arXiv:2103.05607 [hep-lat] .
- A. Alexandru and I. Horváth, Phys. Lett. B 833, 137370 (2022), arXiv:2110.04833 [hep-lat] .
- A. M. Garcia-Garcia and J. C. Osborn, Nucl. Phys. A 770, 141 (2006), arXiv:hep-lat/0512025 .
- A. M. Garcia-Garcia and J. C. Osborn, Phys. Rev. D 75, 034503 (2007), arXiv:hep-lat/0611019 .
- T. G. Kovacs and F. Pittler, Phys. Rev. Lett. 105, 192001 (2010), arXiv:1006.1205 [hep-lat] .
- I. Horváth and R. Mendris, Entropy 22, 1273 (2020), arXiv:1807.03995 [quant-ph] .
- I. Horváth, Quantum Rep. 3, 534 (2021), arXiv:1809.07249 [quant-ph] .
- P. W. Anderson, Phys. Rev. 109, 1492 (1958).
- I. Horváth and P. Markobs, Phys. Rev. Lett. 129, 106601 (2022), arXiv:2110.11266 [cond-mat.dis-nn] .
- I. Horváth and P. Markobs, Phys. Lett. A 467, 128735 (2023a), arXiv:2207.13569 [cond-mat.dis-nn] .
- I. Horváth and P. Markobs, Entropy 25, 1557 (2023b), arXiv:2212.09806 [cond-mat.dis-nn] .
- I. S. Burmistrov, Phys. Rev. Lett. 131, 139701 (2023).
- I. Horváth and P. Markobs, Phys. Rev. Lett. 131, 139702 (2023).
- I. Horváth and P. Markobs, (2022), arXiv:2212.02912 [cond-mat.dis-nn] .
- P. Markobs, Acta Physica Slovaca 56, 561 (2006).
- M. Bollhöfer and Y. Notay, Comp. Phys. Comm. 177, 951 (2007).
- A. Alexandru, Comput. Sci. Eng. 17, 14 (2014).
- A. Alexandru and I. Horváth, Phys. Rev. D92, 045038 (2015), arXiv:1502.07732 [hep-lat] .
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.