Heavy-ion collisions, Gubser flow, and Carroll hydrodynamics (2310.03167v1)
Abstract: Gubser flow provides an analytic model for describing the spacetime dynamics of the quark-gluon plasma produced in heavy-ion collisions. Along with boost and rotation invariance along the beam axis, the model assumes invariance under a combination of translations and special conformal transformations in the transverse plane, leading to a flow profile which evolves not just along the beam axis, but also radially. We argue that Gubser flow and its associated symmetry assumptions arise naturally as a consequence of Carrollian symmetries for a conformal Carroll fluid, thereby providing a dual geometric picture for the flow. Given the inherent ultrarelativistic nature of the flow, this duality with Carroll hydrodynamics - which arises in the $c \to 0$ limit of relativistic hydrodynamics, is natural. We provide a precise map between Gubser flow and the conformal Carroll fluid, appropriate to capture the duality between the two not just at the ideal level, but also with the inclusion of hydrodynamic derivative corrections.
- C. Gale, S. Jeon, and B. Schenke, Hydrodynamic Modeling of Heavy-Ion Collisions, Int. J. Mod. Phys. A 28, 1340011 (2013), arXiv:1301.5893 [nucl-th] .
- J. D. Bjorken, Highly Relativistic Nucleus-Nucleus Collisions: The Central Rapidity Region, Phys. Rev. D 27, 140 (1983).
- S. S. Gubser, Symmetry constraints on generalizations of Bjorken flow, Phys. Rev. D 82, 085027 (2010), arXiv:1006.0006 [hep-th] .
- J.-M. Lévy-Leblond, Une nouvelle limite non-relativiste du groupe de poincaré, Annales de l’I.H.P. Physique Théorique 3, 1 (1965).
- N. D. Sen Gupta, On an Analogue of the Galileo Group, Il Nuovo Cimento A 44, 512–517 (1966).
- L. Freidel and P. Jai-akson, Carrollian hydrodynamics from symmetries, Class. Quant. Grav. 40, 055009 (2023), arXiv:2209.03328 [hep-th] .
- A. Bagchi, K. S. Kolekar, and A. Shukla, Carrollian Origins of Bjorken Flow, Phys. Rev. Lett. 130, 241601 (2023a), arXiv:2302.03053 [hep-th] .
- H. Bondi, M. G. J. van der Burg, and A. W. K. Metzner, Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems, Proc. Roy. Soc. Lond. A 269, 21 (1962).
- R. Sachs, Asymptotic symmetries in gravitational theory, Phys. Rev. 128, 2851 (1962).
- A. Bagchi, Correspondence between Asymptotically Flat Spacetimes and Nonrelativistic Conformal Field Theories, Phys. Rev. Lett. 105, 171601 (2010), arXiv:1006.3354 [hep-th] .
- C. Duval, G. W. Gibbons, and P. A. Horvathy, Conformal Carroll groups and BMS symmetry, Class. Quant. Grav. 31, 092001 (2014), arXiv:1402.5894 [gr-qc] .
- A. Bagchi and R. Fareghbal, BMS/GCA Redux: Towards Flatspace Holography from Non-Relativistic Symmetries, JHEP 10, 092, arXiv:1203.5795 [hep-th] .
- G. Barnich, A. Gomberoff, and H. A. Gonzalez, The Flat limit of three dimensional asymptotically anti-de Sitter spacetimes, Phys. Rev. D 86, 024020 (2012), arXiv:1204.3288 [gr-qc] .
- G. Barnich, Entropy of three-dimensional asymptotically flat cosmological solutions, JHEP 10, 095, arXiv:1208.4371 [hep-th] .
- A. Bagchi, P. Dhivakar, and S. Dutta, AdS Witten diagrams to Carrollian correlators, JHEP 04, 135, arXiv:2303.07388 [hep-th] .
- A. Saha, Carrollian approach to 1 + 3D flat holography, JHEP 06, 051, arXiv:2304.02696 [hep-th] .
- K. Nguyen and P. West, Carrollian conformal fields and flat holography, (2023), arXiv:2305.02884 [hep-th] .
- A. Bagchi, Tensionless Strings and Galilean Conformal Algebra, JHEP 05, 141, arXiv:1303.0291 [hep-th] .
- A. Bagchi, S. Chakrabortty, and P. Parekh, Tensionless Strings from Worldsheet Symmetries, JHEP 01, 158, arXiv:1507.04361 [hep-th] .
- R. F. Penna, Near-horizon carroll symmetry and black hole love numbers, (2018), arXiv:1812.05643 [hep-th] .
- L. Donnay and C. Marteau, Carrollian physics at the black hole horizon, Class. Quant. Grav. 36, 165002 (2019), arXiv:1903.09654 [hep-th] .
- L. Freidel and P. Jai-akson, Carrollian hydrodynamics and symplectic structure on stretched horizons, (2022), arXiv:2211.06415 [gr-qc] .
- J. Redondo-Yuste and L. Lehner, Non-linear black hole dynamics and carrollian fluids, JHEP 02, 240, arXiv:2212.06175 [gr-qc] .
- A. Bagchi, D. Grumiller, and M. M. Sheikh-Jabbari, Horizon Strings as 3d Black Hole Microstates, (2022b), arXiv:2210.10794 [hep-th] .
- S. S. Gubser and A. Yarom, Conformal hydrodynamics in Minkowski and de Sitter spacetimes, Nucl. Phys. B 846, 469 (2011), arXiv:1012.1314 [hep-th] .
- J. Armas and E. Have, Carrollian fluids and spontaneous breaking of boost symmetry, (2023), arXiv:2308.10594 [hep-th] .
- T. Damour, Black-hole eddy currents, Phys. Rev. D 18, 3598 (1978).
- R. H. Price and K. S. Thorne, Membrane viewpoint on black holes: Properties and evolution of the stretched horizon, Phys. Rev. D 33, 915 (1986).
- R. A. Janik and R. B. Peschanski, Asymptotic perfect fluid dynamics as a consequence of Ads/CFT, Phys. Rev. D 73, 045013 (2006a), arXiv:hep-th/0512162 .
- R. A. Janik and R. B. Peschanski, Gauge/gravity duality and thermalization of a boost-invariant perfect fluid, Phys. Rev. D 74, 046007 (2006b), arXiv:hep-th/0606149 .
- R. A. Janik, Viscous plasma evolution from gravity using AdS/CFT, Phys. Rev. Lett. 98, 022302 (2007), arXiv:hep-th/0610144 .
- D. Grumiller and P. Romatschke, On the collision of two shock waves in AdS(5), JHEP 08, 027, arXiv:0803.3226 [hep-th] .
- J. L. Albacete, Y. V. Kovchegov, and A. Taliotis, Modeling Heavy Ion Collisions in AdS/CFT, JHEP 07, 100, arXiv:0805.2927 [hep-th] .
- A. Taliotis, Heavy Ion Collisions with Transverse Dynamics from Evolving AdS Geometries, JHEP 09, 102, arXiv:1004.3500 [hep-th] .
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.