Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Characterizing the Inter-Core Qubit Traffic in Large-Scale Quantum Modular Architectures (2310.01921v2)

Published 3 Oct 2023 in quant-ph and cs.ET

Abstract: Modular quantum processor architectures are envisioned as a promising solution for the scalability of quantum computing systems beyond the Noisy Intermediate Scale Quantum (NISQ) devices era. Based upon interconnecting tens to hundreds of quantum cores via a quantum intranet, this approach unravels the pressing limitations of densely qubit-packed monolithic processors, mainly by mitigating the requirements of qubit control and enhancing qubit isolation, and therefore enables executing large-scale algorithms on quantum computers. In order to optimize such architectures, it is crucial to analyze the quantum state transfers occurring via inter-core communication networks, referred to as inter-core qubit traffic. This would also provide insights to improve the software and hardware stack for multi-core quantum computers. To this aim, we present a pioneering characterization of the spatio-temporal inter-core qubit traffic in large-scale circuits. The programs are executed on an all-to-all connected multi-core architecture that supports up to around 1000 qubits. We characterize the qubit traffic based on multiple performance metrics to assess the computational process and the communication overhead. Based on the showcased results, we conclude on the scalability of the presented algorithms, provide a set of guidelines to improve mapping quantum circuits to multi-core processors, and lay the foundations of benchmarking large-scale multi-core architectures.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (60)
  1. Characterization and modeling of multicast communication in cache-coherent manycore processors. Computers & Electrical Engineering 51 (2016), 168–183. https://doi.org/10.1016/j.compeleceng.2015.12.018
  2. Multicast On-chip Traffic Analysis Targeting Manycore NoC Design. In 2015 23rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing. 370–378. https://doi.org/10.1109/PDP.2015.26
  3. Google Quantum AI. 2022. Cirq: An open source framework for programming quantum computers. https://quantumai.google/cirq
  4. Qiskit pulse: programming quantum computers through the cloud with pulses. Quantum Science and Technology 5, 4 (aug 2020), 044006. https://doi.org/10.1088/2058-9565/aba404
  5. Time-sliced quantum circuit partitioning for modular architectures. In Proceedings of the 17th ACM International Conference on Computing Frontiers. ACM. https://doi.org/10.1145/3387902.3392617
  6. Mapping quantum circuits to modular architectures with QUBO. https://doi.org/10.48550/arXiv.2305.06687
  7. Interaction graph-based profiling of quantum benchmarks for improving quantum circuit mapping techniques. arXiv:2212.06640 [quant-ph]
  8. A communication characterisation of Splash-2 and Parsec. In 2009 IEEE International Symposium on Workload Characterization (IISWC). 86–97. https://doi.org/10.1109/IISWC.2009.5306792
  9. Noisy intermediate-scale quantum algorithms. Reviews of Modern Physics 94, 1 (feb 2022). https://doi.org/10.1103/revmodphys.94.015004
  10. Quantum machine learning. Nature 549, 7671 (13 Sept. 2017), 195–202. https://doi.org/10.1038/nature23474
  11. Paul Bogdan and Radu Marculescu. 2011. Non-Stationary Traffic Analysis and Its Implications on Multicore Platform Design. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 30, 4 (2011), 508–519. https://doi.org/10.1109/TCAD.2011.2111270
  12. The future of quantum computing with superconducting qubits. Journal of Applied Physics 132, 16 (10 2022). https://doi.org/10.1063/5.0082975
  13. Co-designing a scalable quantum computer with trapped atomic ions. npj Quantum Information 2 (2016). https://api.semanticscholar.org/CorpusID:28267210
  14. Validating quantum computers using randomized model circuits. Phys. Rev. A 100 (Sep 2019), 032328. Issue 3. https://doi.org/10.1103/PhysRevA.100.032328
  15. A new quantum ripple-carry addition circuit. (11 2004).
  16. Parallel Computer Architecture: A Hardware/Software Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.
  17. Yulong Dong and Lin Lin. 2021. Random circuit block-encoded matrix and a proposal of quantum LINPACK benchmark. Physical Review A 103, 6 (jun 2021). https://doi.org/10.1103/physreva.103.062412
  18. A Grover-search Based Quantum Learning Scheme for Classification. New Journal of Physics 23 (02 2021). https://doi.org/10.1088/1367-2630/abdefa
  19. P Erdös and A Rényi. 1959. On Random Graphs I. Publicationes Mathematicae Debrecen 6 (1959), 290–297.
  20. Hungarian Qubit Assignment for Optimized Mapping of Quantum Circuits on Multi-Core Architectures. IEEE Computer Architecture Letters (2023). https://doi.org/10.1109/LCA.2023.3318857 arXiv:https://arxiv.org/abs/2309.12182
  21. Interconnect Fabrics for Multi-Core Quantum Processors: A Context Analysis. (2023). https://doi.org/10.48550/arXiv.2309.07313 arXiv:https://arxiv.org/abs/2309.07313
  22. A Quantum Approximate Optimization Algorithm. arXiv:1411.4028 [quant-ph]
  23. Compiler Design for Distributed Quantum Computing. IEEE Transactions on Quantum Engineering 2 (2021), 1–20. https://doi.org/10.1109/TQE.2021.3053921
  24. Entanglement Across Separate Silicon Dies in a Modular Superconducting Qubit Device. https://doi.org/10.1038/s41534-021-00484-1
  25. Paul V. Gratz and Stephen W. Keckler. 2009. Realistic Workload Characterization and Analysis for Networks-on-Chip Design. https://api.semanticscholar.org/CorpusID:12992323
  26. Going Beyond Bell’s Theorem. arXiv:0712.0921 [quant-ph]
  27. Lov K. Grover. 1996. A fast quantum mechanical algorithm for database search. arXiv:quant-ph/9605043 [quant-ph]
  28. Multitasking workload scheduling on flexible-core chip multiprocessors. In Proceedings of the 17th international conference on Parallel architectures and compilation techniques. 187–196.
  29. Power and Energy Applications Based on Quantum Computing: The Possible Potentials of Grover’s Algorithm. Electronics 11, 18 (2022). https://doi.org/10.3390/electronics11182919
  30. Multicore Quantum Computing. Phys. Rev. Appl. 18 (Oct 2022), 044064. Issue 4. https://doi.org/10.1103/PhysRevApplied.18.044064
  31. Shuttling-based trapped-ion quantum information processing. AVS Quantum Science 2, 1 (03 2020). https://doi.org/10.1116/1.5126186 014101.
  32. OpenQL: A Portable Quantum Programming Framework for Quantum Accelerators. J. Emerg. Technol. Comput. Syst. 18, 1, Article 13 (dec 2021), 24 pages. https://doi.org/10.1145/3474222
  33. Randomized benchmarking of quantum gates. Physical Review A 77, 1 (jan 2008). https://doi.org/10.1103/physreva.77.012307
  34. Improving Fairness, Throughput and Energy-Efficiency on a Chip Multiprocessor through DVFS. SIGARCH Comput. Archit. News 35, 1 (mar 2007), 31–38. https://doi.org/10.1145/1241601.1241609
  35. QASMBench: A Low-level QASM Benchmark Suite for NISQ Evaluation and Simulation. arXiv:2005.13018 [quant-ph]
  36. Guang Hao Low and Isaac L. Chuang. 2019. Hamiltonian Simulation by Qubitization. Quantum 3 (jul 2019), 163. https://doi.org/10.22331/q-2019-07-12-163
  37. Dynamically Reconfigurable Photon Exchange in a Superconducting Quantum Processor. (3 2023). arXiv:2303.03507 [quant-ph]
  38. QPack: Quantum Approximate Optimization Algorithms as universal benchmark for quantum computers. arXiv:2103.17193 [cs.ET]
  39. Microsoft. [n. d.]. Microsoft/QSHARP-language: Official Repository for design of the quantum programming language Q# and its core libraries. https://github.com/microsoft/qsharp-language
  40. Michael A. Nielsen and Isaac L. Chuang. 2010. Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press. https://doi.org/10.1017/CBO9780511976667
  41. Michael A. Nielsen and Isaac L. Chuang. 2011. Quantum Computation and Quantum Information: 10th Anniversary Edition (10th ed.). Cambridge University Press, USA.
  42. Alexandru Paler and Simon J. Devitt. 2015. An introduction to Fault-tolerant Quantum Computing. arXiv:1508.03695 [quant-ph]
  43. A variational eigenvalue solver on a photonic quantum processor. Nature Communications 5, 1 (jul 2014). https://doi.org/10.1038/ncomms5213
  44. John Preskill. 2018. Quantum Computing in the NISQ era and beyond. Quantum 2 (Aug. 2018), 79. https://doi.org/10.22331/q-2018-08-06-79
  45. Will Quantum Computers Scale Without Inter-Chip Comms? A Structured Design Exploration to the Monolithic vs Distributed Architectures Quest. In 2020 XXXV Conference on Design of Circuits and Integrated Systems (DCIS). 1–6. https://doi.org/10.1109/DCIS51330.2020.9268630
  46. On Double Full-Stack Communication-Enabled Architectures for Multicore Quantum Computers. IEEE Micro 41, 5 (2021), 48–56. https://doi.org/10.1109/MM.2021.3092706
  47. Modelling Short-Range Quantum Teleportation for Scalable Multi-Core Quantum Computing Architectures. In Proceedings of the Eight Annual ACM International Conference on Nanoscale Computing and Communication (Virtual Event, Italy) (NANOCOM ’21). Association for Computing Machinery, New York, NY, USA, Article 14, 7 pages. https://doi.org/10.1145/3477206.3477461
  48. Characterizing the Spatio-Temporal Qubit Traffic of a Quantum Intranet Aiming at Modular Quantum Computer Architectures. In Proceedings of the 9th ACM International Conference on Nanoscale Computing and Communication (Barcelona, Catalunya, Spain) (NANOCOM ’22). Association for Computing Machinery, New York, NY, USA, Article 8, 7 pages. https://doi.org/10.1145/3558583.3558846
  49. Modelling Short-range Quantum Teleportation for Scalable Multi-Core Quantum Computing Architectures. 1–7. https://doi.org/10.1145/3477206.3477461
  50. Peter W. Shor. 1997. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. SIAM J. Comput. 26, 5 (oct 1997), 1484–1509. https://doi.org/10.1137/s0097539795293172
  51. A Statistical Traffic Model for On-Chip Interconnection Networks. In 14th IEEE International Symposium on Modeling, Analysis, and Simulation. 104–116. https://doi.org/10.1109/MASCOTS.2006.9
  52. IonQ Staff. 2023. Algorithmic qubits: A better single-number metric. https://ionq.com/resources/algorithmic-qubits-a-better-single-number-metric
  53. CutQC: Using Small Quantum Computers for Large Quantum Circuit Evaluations. In Proceedings of the 26th ACM International Conference on Architectural Support for Programming Languages and Operating Systems (Virtual, USA) (ASPLOS ’21). Association for Computing Machinery, New York, NY, USA, 473–486. https://doi.org/10.1145/3445814.3446758
  54. The Variational Quantum Eigensolver: A review of methods and best practices. Physics Reports 986 (nov 2022), 1–128. https://doi.org/10.1016/j.physrep.2022.08.003
  55. SupermarQ: A Scalable Quantum Benchmark Suite. 587–603. https://doi.org/10.1109/HPCA53966.2022.00050
  56. Quality, Speed, and Scale: three key attributes to measure the performance of near-term quantum computers. arXiv:2110.14108 [quant-ph]
  57. Duncan J. Watts and Steven H. Strogatz. 1998. Collective dynamics of ‘small-world’ networks. Nature 393, 6684 (1998), 440–442. https://doi.org/10.1038/30918
  58. Stefan Woerner and Daniel J. Egger. 2019. Quantum risk analysis. npj Quantum Information 5, 1 (feb 2019). https://doi.org/10.1038/s41534-019-0130-6
  59. William K Wootters and Wojciech H Zurek. 1982. A single quantum cannot be cloned. Nature (1982). https://doi.org/10.1038/299802a0
  60. Realizing all-to-all couplings among detachable quantum modules using a microwave quantum state router. npj Quantum Information 9, 1 (Dec. 2023). https://doi.org/10.1038/s41534-023-00723-7
Citations (2)

Summary

We haven't generated a summary for this paper yet.