Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Attention-Based Deep Reinforcement Learning for Qubit Allocation in Modular Quantum Architectures (2406.11452v1)

Published 17 Jun 2024 in quant-ph and cs.AI

Abstract: Modular, distributed and multi-core architectures are currently considered a promising approach for scalability of quantum computing systems. The integration of multiple Quantum Processing Units necessitates classical and quantum-coherent communication, introducing challenges related to noise and quantum decoherence in quantum state transfers between cores. Optimizing communication becomes imperative, and the compilation and mapping of quantum circuits onto physical qubits must minimize state transfers while adhering to architectural constraints. The compilation process, inherently an NP-hard problem, demands extensive search times even with a small number of qubits to be solved to optimality. To address this challenge efficiently, we advocate for the utilization of heuristic mappers that can rapidly generate solutions. In this work, we propose a novel approach employing Deep Reinforcement Learning (DRL) methods to learn these heuristics for a specific multi-core architecture. Our DRL agent incorporates a Transformer encoder and Graph Neural Networks. It encodes quantum circuits using self-attention mechanisms and produce outputs through an attention-based pointer mechanism that directly signifies the probability of matching logical qubits with physical cores. This enables the selection of optimal cores for logical qubits efficiently. Experimental evaluations show that the proposed method can outperform baseline approaches in terms of reducing inter-core communications and minimizing online time-to-solution. This research contributes to the advancement of scalable quantum computing systems by introducing a novel learning-based heuristic approach for efficient quantum circuit compilation and mapping.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com