Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Complexity in Tame Quantum Theories (2310.01484v2)

Published 2 Oct 2023 in hep-th, hep-ph, math.AG, math.LO, and quant-ph

Abstract: Inspired by the notion that physical systems can contain only a finite amount of information or complexity, we introduce a framework that allows for quantifying the amount of logical information needed to specify a function or set. We then apply this methodology to a variety of physical systems and derive the complexity of parameter-dependent physical observables and coupling functions appearing in effective Lagrangians. In order to implement these ideas, it is essential to consider physical theories that can be defined in an o-minimal structure. O-minimality, a concept from mathematical logic, encapsulates a tameness principle. It was recently argued that this property is inherent to many known quantum field theories and is linked to the UV completion of the theory. To assign a complexity to each statement in these theories one has to further constrain the allowed o-minimal structures. To exemplify this, we show that many physical systems can be formulated using Pfaffian o-minimal structures, which have a well-established notion of complexity. More generally, we propose adopting sharply o-minimal structures, recently introduced by Binyamini and Novikov, as an overarching framework to measure complexity in quantum theories.

Summary

We haven't generated a summary for this paper yet.