On the Complexity of Quantum Field Theory (2410.23338v1)
Abstract: We initiate a study of the complexity of quantum field theories (QFTs) by proposing a measure of information contained in a QFT and its observables. We show that from minimal assertions, one is naturally led to measure complexity by two integers, called format and degree, which characterize the information content of the functions and domains required to specify a theory or an observable. The strength of this proposal is that it applies to any physical quantity, and can therefore be used for analyzing complexities within an individual QFT, as well as studying the entire space of QFTs. We discuss the physical interpretation of our approach in the context of perturbation theory, symmetries, and the renormalization group. Key applications include the detection of complexity reductions in observables, for example due to algebraic relations, and understanding the emergence of simplicity when considering limits. The mathematical foundations of our constructions lie in the framework of sharp o-minimality, which ensures that the proposed complexity measure exhibits general properties inferred from consistency and universality.
- M. R. Douglas, “Spaces of Quantum Field Theories,” J. Phys. Conf. Ser. 462 no. 1, (2013) 012011, arXiv:1005.2779 [hep-th].
- L. Susskind, “Computational Complexity and Black Hole Horizons,” Fortsch. Phys. 64 (2016) 24–43, arXiv:1403.5695 [hep-th]. [Addendum: Fortsch.Phys. 64, 44–48 (2016)].
- A. R. Brown, D. A. Roberts, L. Susskind, B. Swingle, and Y. Zhao, “Holographic Complexity Equals Bulk Action?,” Phys. Rev. Lett. 116 no. 19, (2016) 191301, arXiv:1509.07876 [hep-th].
- R. Jefferson and R. C. Myers, “Circuit complexity in quantum field theory,” JHEP 10 (2017) 107, arXiv:1707.08570 [hep-th].
- T. W. Grimm, L. Schlechter, and M. van Vliet, “Complexity in tame quantum theories,” JHEP 05 (2024) 001, arXiv:2310.01484 [hep-th].
- Cambridge University Press, Cambridge, 1998.
- T. W. Grimm, “Taming the landscape of effective theories,” JHEP 11 (2022) 003, arXiv:2112.08383 [hep-th].
- M. R. Douglas, T. W. Grimm, and L. Schlechter, “The Tameness of Quantum Field Theory, Part I – Amplitudes,” arXiv:2210.10057 [hep-th].
- M. R. Douglas, T. W. Grimm, and L. Schlechter, “The Tameness of Quantum Field Theory, Part II – Structures and CFTs,” arXiv:2302.04275 [hep-th].
- T. W. Grimm, G. Ravazzini, and M. van Vliet, “Taming non-analyticities of QFT observables,” arXiv:2407.08815 [hep-th].
- T. W. Grimm, A. Hoefnagels, and M. van Vliet, “Structure and Complexity of Cosmological Correlators,” arXiv:2404.03716 [hep-th].
- G. Binyamini, D. Novikov, and B. Zack, “Sharply o-minimal structures and sharp cellular decomposition,” arXiv:2209.10972 [math.LO].
- G. Binyamini and D. Novikov, “Tameness in geometry and arithmetic: beyond o-minimality,” EMS Press (12, 2023) 1440–1461.
- A. Gabrielov and N. Vorobjov, “Complexity of computations with Pfaffian and Noetherian functions,” in Normal forms, bifurcations and finiteness problems in differential equations, vol. 137 of NATO Sci. Ser. II Math. Phys. Chem., pp. 211–250. Kluwer Acad. Publ., Dordrecht, 2004.
- G. Binyamini and N. Vorobjov, “Effective cylindrical cell decompositions for restricted sub-Pfaffian sets,” Int. Math. Res. Not. IMRN no. 5, (2022) 3493–3510, arXiv:2004.06411 [math.AG].
- American Mathematical Society, Providence, RI, 1991. https://doi.org/10.1090/mmono/088.
- C. Vafa, “The String landscape and the swampland,” arXiv:hep-th/0509212.
- E. Palti, “The Swampland: Introduction and Review,” Fortsch. Phys. 67 no. 6, (2019) 1900037, arXiv:1903.06239 [hep-th].
- M. R. Douglas and S. Kachru, “Flux compactification,” Rev. Mod. Phys. 79 (2007) 733–796, arXiv:hep-th/0610102.
- B. Bakker, B. Klingler, and J. Tsimerman, “Tame topology of arithmetic quotients and algebraicity of Hodge loci,” J. Amer. Math. Soc. 33 no. 4, (2020) 917–939, arXiv:1810.04801 [math.LO].
- G. Binyamini, “Log-Noetherian functions,” arXiv:2405.16963 [math.AG].
- F. Denef and M. R. Douglas, “Computational complexity of the landscape. I.,” Annals Phys. 322 (2007) 1096–1142, arXiv:hep-th/0602072.
- F. Denef, M. R. Douglas, B. Greene, and C. Zukowski, “Computational complexity of the landscape II—Cosmological considerations,” Annals Phys. 392 (2018) 93–127, arXiv:1706.06430 [hep-th].
- J. Stout, “Infinite Distance Limits and Information Theory,” arXiv:2106.11313 [hep-th].
- J. Stout, “Infinite Distances and Factorization,” arXiv:2208.08444 [hep-th].
- T. W. Grimm and M. van Vliet, “Complexity of EFT and the Swampland,” In progress .
- P. Speissegger, “The Pfaffian closure of an o-minimal structure,” J. Reine Angew. Math. 508 (1999) 189–211. https://doi.org/10.1515/crll.1999.026.
- N. Arkani-Hamed, D. Baumann, A. Hillman, A. Joyce, H. Lee, and G. L. Pimentel, “Differential Equations for Cosmological Correlators,” arXiv:2312.05303 [hep-th].
- F. Gasparotto, A. Rapakoulias, and S. Weinzierl, “Nonperturbative computation of lattice correlation functions by differential equations,” Phys. Rev. D 107 no. 1, (2023) 014502, arXiv:2210.16052 [hep-th].
- S. Weinzierl, “Correlation functions on the lattice and twisted cocycles,” Phys. Lett. B 805 (2020) 135449, arXiv:2003.05839 [hep-th].
- N. Arkani-Hamed, F. Cachazo, and J. Kaplan, “What is the Simplest Quantum Field Theory?,” JHEP 09 (2010) 016, arXiv:0808.1446 [hep-th].
- A. B. Zamolodchikov, “Irreversibility of the Flux of the Renormalization Group in a 2D Field Theory,” JETP Lett. 43 (1986) 730–732.
- Z. Komargodski and A. Schwimmer, “On Renormalization Group Flows in Four Dimensions,” JHEP 12 (2011) 099, arXiv:1107.3987 [hep-th].
- O. J. Rosten, “Fundamentals of the Exact Renormalization Group,” Phys. Rept. 511 (2012) 177–272, arXiv:1003.1366 [hep-th].
- R. Gopakumar and C. Vafa, “M theory and topological strings. 1.,” arXiv:hep-th/9809187.
- R. Gopakumar and C. Vafa, “M theory and topological strings. 2.,” arXiv:hep-th/9812127.
- T. W. Grimm, E. Palti, and I. Valenzuela, “Infinite Distances in Field Space and Massless Towers of States,” JHEP 08 (2018) 143, arXiv:1802.08264 [hep-th].
- B. Heidenreich, M. Reece, and T. Rudelius, “Emergence of Weak Coupling at Large Distance in Quantum Gravity,” Phys. Rev. Lett. 121 no. 5, (2018) 051601, arXiv:1802.08698 [hep-th].
- N. Chagnet, S. Chapman, J. de Boer, and C. Zukowski, “Complexity for Conformal Field Theories in General Dimensions,” Phys. Rev. Lett. 128 no. 5, (2022) 051601, arXiv:2103.06920 [hep-th].
- G. Dvali, “Entropy Bound and Unitarity of Scattering Amplitudes,” JHEP 03 (2021) 126, arXiv:2003.05546 [hep-th].
- G. Dvali, O. Kaikov, and J. S. V. Bermúdez, “How special are black holes? Correspondence with objects saturating unitarity bounds in generic theories,” Phys. Rev. D 105 no. 5, (2022) 056013, arXiv:2112.00551 [hep-th].
- Y. Hamada, M. Montero, C. Vafa, and I. Valenzuela, “Finiteness and the swampland,” J. Phys. A 55 no. 22, (2022) 224005, arXiv:2111.00015 [hep-th].
- A. Tarski, A decision method for elementary algebra and geometry. University of California Press, Berkeley-Los Angeles, Calif., 1951. 2nd ed.
- L. van den Dries and C. Miller, “On the real exponential field with restricted analytic functions,” Israel Journal of Mathematics 92 no. 1-3, (Feb., 1995) 427.
- M. A. Nielsen, “A geometric approach to quantum circuit lower bounds,” Quant. Inf. Comput. 6 no. 3, (2006) 213–262, arXiv:quant-ph/0502070.