Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 26 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 216 tok/s Pro
2000 character limit reached

Further remarks on de Sitter space, extremal surfaces and time entanglement (2310.00320v4)

Published 30 Sep 2023 in hep-th

Abstract: We develop further the investigations in arXiv:2210.12963 [hep-th] on de Sitter space, extremal surfaces and time entanglement. We discuss the no-boundary de Sitter extremal surface areas as certain analytic continuations from $AdS$ while also amounting to space-time rotations. The structure of the extremal surfaces suggests a geometric picture of the time-entanglement or pseudo-entanglement wedge. We also study some entropy relations for multiple subregions. The analytic continuation suggests a heuristic Lewkowycz-Maldacena formulation of the extremal surface areas. In the bulk, this is now a replica formulation on the Wavefunction which suggests interpretation as pseudo-entropy. Finally we also discuss aspects of future-past entangled states and time evolution.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (86)
  1. J. M. Maldacena, “The large N limit of superconformal field theories and supergravity,” Adv. Theor. Math. Phys.  2, 231 (1998) [Int. J. Theor. Phys.  38, 1113 (1999)] [arXiv:hep-th/9711200].
  2. S. S. Gubser, I. R. Klebanov and A. M. Polyakov, “Gauge theory correlators from non-critical string theory,” Phys. Lett.  B 428, 105 (1998) [arXiv:hep-th/9802109].
  3. E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys.  2, 253 (1998) [arXiv:hep-th/9802150].
  4. A. Strominger, “The dS / CFT correspondence,” JHEP 0110, 034 (2001) [hep-th/0106113].
  5. E. Witten, “Quantum gravity in de Sitter space,” [hep-th/0106109].
  6. J. M. Maldacena, “Non-Gaussian features of primordial fluctuations in single field inflationary models,” JHEP 0305, 013 (2003), [astro-ph/0210603].
  7. D. Anninos, T. Hartman and A. Strominger, “Higher Spin Realization of the dS/CFT Correspondence,” Class. Quant. Grav.  34, no. 1, 015009 (2017) doi:10.1088/1361-6382/34/1/015009 [arXiv:1108.5735 [hep-th]].
  8. M. Spradlin, A. Strominger and A. Volovich, “Les Houches lectures on de Sitter space,” hep-th/0110007.
  9. D. Anninos, “De Sitter Musings,” Int. J. Mod. Phys. A 27, 1230013 (2012) doi:10.1142/S0217751X1230013X [arXiv:1205.3855 [hep-th]].
  10. D. A. Galante, “Modave lectures on de Sitter space & holography,” PoS Modave2022, 003 (2023) doi:10.22323/1.435.0003 [arXiv:2306.10141 [hep-th]].
  11. G. W. Gibbons and S. W. Hawking, “Cosmological Event Horizons, Thermodynamics, and Particle Creation,” Phys. Rev. D 15, 2738 (1977). doi:10.1103/PhysRevD.15.2738
  12. S. Ryu and T. Takayanagi, “Holographic derivation of entanglement entropy from AdS/CFT,” Phys. Rev. Lett.  96, 181602 (2006) [hep-th/0603001].
  13. S. Ryu and T. Takayanagi, “Aspects of Holographic Entanglement Entropy,” JHEP 0608, 045 (2006) [hep-th/0605073].
  14. V. E. Hubeny, M. Rangamani and T. Takayanagi, “A Covariant holographic entanglement entropy proposal,” JHEP 0707 (2007) 062 [arXiv:0705.0016 [hep-th]].
  15. M. Rangamani and T. Takayanagi, “Holographic Entanglement Entropy,” Lect. Notes Phys. 931, pp.1-246 (2017) Springer, 2017, doi:10.1007/978-3-319-52573-0 [arXiv:1609.01287 [hep-th]].
  16. K. Narayan, “de Sitter extremal surfaces,” Phys. Rev. D 91, no. 12, 126011 (2015) [arXiv:1501.03019 [hep-th]].
  17. K. Narayan, “de Sitter space and extremal surfaces for spheres,” Phys. Lett. B 753, 308 (2016) [arXiv:1504.07430 [hep-th]].
  18. Y. Sato, “Comments on Entanglement Entropy in the dS/CFT Correspondence,” Phys. Rev. D 91, no. 8, 086009 (2015) [arXiv:1501.04903 [hep-th]].
  19. M. Miyaji and T. Takayanagi, “Surface/State Correspondence as a Generalized Holography,” PTEP 2015, no. 7, 073B03 (2015) doi:10.1093/ptep/ptv089 [arXiv:1503.03542 [hep-th]].
  20. K. Narayan, “On extremal surfaces and de Sitter entropy,” Phys. Lett. B 779, 214 (2018) [arXiv:1711.01107 [hep-th]].
  21. K. Narayan, “de Sitter future-past extremal surfaces and the entanglement wedge,” Phys. Rev. D 101, no.8, 086014 (2020) doi:10.1103/PhysRevD.101.086014 [arXiv:2002.11950 [hep-th]].
  22. K. Doi, J. Harper, A. Mollabashi, T. Takayanagi and Y. Taki, “Pseudoentropy in dS/CFT and Timelike Entanglement Entropy,” Phys. Rev. Lett. 130, no.3, 031601 (2023) doi:10.1103/PhysRevLett.130.031601 [arXiv:2210.09457 [hep-th]].
  23. K. Narayan, “de Sitter space, extremal surfaces, and time entanglement,” Phys. Rev. D 107, no.12, 126004 (2023) doi:10.1103/PhysRevD.107.126004 [arXiv:2210.12963 [hep-th]].
  24. Y. Hikida, T. Nishioka, T. Takayanagi and Y. Taki, “CFT duals of three-dimensional de Sitter gravity,” JHEP 05, 129 (2022) doi:10.1007/JHEP05(2022)129 [arXiv:2203.02852 [hep-th]].
  25. Y. Hikida, T. Nishioka, T. Takayanagi and Y. Taki, “Holography in de Sitter Space via Chern-Simons Gauge Theory,” Phys. Rev. Lett. 129, no.4, 041601 (2022) [arXiv:2110.03197 [hep-th]].
  26. T. Hartman and J. Maldacena, “Time Evolution of Entanglement Entropy from Black Hole Interiors,” JHEP 1305, 014 (2013) [arXiv:1303.1080 [hep-th]].
  27. J. M. Maldacena, “Eternal black holes in anti-de Sitter,” JHEP 0304, 021 (2003) [hep-th/0106112].
  28. C. Arias, F. Diaz and P. Sundell, “De Sitter Space and Entanglement,” Class. Quant. Grav.  37, no. 1, 015009 (2020) doi:10.1088/1361-6382/ab5b78 [arXiv:1901.04554 [hep-th]].
  29. C. Arias, F. Diaz, R. Olea and P. Sundell, “Liouville description of conical defects in dS44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT, Gibbons-Hawking entropy as modular entropy, and dS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT holography,” JHEP 04, 124 (2020) doi:10.1007/JHEP04(2020)124 [arXiv:1906.05310 [hep-th]].
  30. J. Cotler and A. Strominger, “Cosmic ER=EPR in dS/CFT,” [arXiv:2302.00632 [hep-th]].
  31. J. Cotler and A. Strominger, “The Universe as a Quantum Encoder,” [arXiv:2201.11658 [hep-th]].
  32. Y. Nakata, T. Takayanagi, Y. Taki, K. Tamaoka and Z. Wei, “New holographic generalization of entanglement entropy,” Phys. Rev. D 103, no.2, 026005 (2021) [arXiv:2005.13801 [hep-th]].
  33. A. Mollabashi, N. Shiba, T. Takayanagi, K. Tamaoka and Z. Wei, “Pseudo Entropy in Free Quantum Field Theories,” Phys. Rev. Lett. 126, no.8, 081601 (2021) doi:10.1103/PhysRevLett.126.081601 [arXiv:2011.09648 [hep-th]].
  34. A. Mollabashi, N. Shiba, T. Takayanagi, K. Tamaoka and Z. Wei, “Aspects of pseudoentropy in field theories,” Phys. Rev. Res. 3, no.3, 033254 (2021) doi:10.1103/PhysRevResearch.3.033254 [arXiv:2106.03118 [hep-th]].
  35. J. Mukherjee, “Pseudo Entropy in U(1) gauge theory,” JHEP 10, 016 (2022) doi:10.1007/JHEP10(2022)016 [arXiv:2205.08179 [hep-th]].
  36. B. Liu, H. Chen and B. Lian, “Entanglement Entropy in Timelike Slices: a Free Fermion Study,” [arXiv:2210.03134 [cond-mat.stat-mech]].
  37. Z. Li, Z. Q. Xiao and R. Q. Yang, “On holographic time-like entanglement entropy,” JHEP 04, 004 (2023) doi:10.1007/JHEP04(2023)004 [arXiv:2211.14883 [hep-th]].
  38. S. He, J. Yang, Y. X. Zhang and Z. X. Zhao, “Pseudo-entropy for descendant operators in two-dimensional conformal field theories,” [arXiv:2301.04891 [hep-th]].
  39. H. Y. Chen, Y. Hikida, Y. Taki and T. Uetoko, “Complex saddles of three-dimensional de Sitter gravity via holography,” Phys. Rev. D 107, no.10, L101902 (2023) [arXiv:2302.09219 [hep-th]].
  40. K. Doi, J. Harper, A. Mollabashi, T. Takayanagi and Y. Taki, “Timelike entanglement entropy,” JHEP 05, 052 (2023) doi:10.1007/JHEP05(2023)052 [arXiv:2302.11695 [hep-th]].
  41. X. Jiang, P. Wang, H. Wu and H. Yang, “Timelike entanglement entropy and TT¯ deformation,” Phys. Rev. D 108, no.4, 046004 (2023) doi:10.1103/PhysRevD.108.046004 [arXiv:2302.13872 [hep-th]].
  42. Z. Chen, “Complex-valued Holographic Pseudo Entropy via Real-time AdS/CFT Correspondence,” [arXiv:2302.14303 [hep-th]].
  43. K. Narayan and H. K. Saini, “Notes on time entanglement and pseudo-entropy,” [arXiv:2303.01307 [hep-th]].
  44. X. Jiang, P. Wang, H. Wu and H. Yang, “Timelike entanglement entropy in dS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT/CFT22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT,” JHEP 08, 216 (2023) doi:10.1007/JHEP08(2023)216 [arXiv:2304.10376 [hep-th]].
  45. C. S. Chu and H. Parihar, “Time-like entanglement entropy in AdS/BCFT,” JHEP 06, 173 (2023) doi:10.1007/JHEP06(2023)173 [arXiv:2304.10907 [hep-th]].
  46. S. He, J. Yang, Y. X. Zhang and Z. X. Zhao, “Pseudo entropy of primary operators in T⁢T¯/J⁢T¯𝑇¯𝑇𝐽¯𝑇T\overline{T}/J\overline{T}italic_T over¯ start_ARG italic_T end_ARG / italic_J over¯ start_ARG italic_T end_ARG-deformed CFTs,” JHEP 09, 025 (2023) doi:10.1007/JHEP09(2023)025 [arXiv:2305.10984 [hep-th]].
  47. H. Y. Chen, Y. Hikida, Y. Taki and T. Uetoko, “Complex saddles of Chern-Simons gravity and dS3/CFT2 correspondence,” Phys. Rev. D 108, no.6, 066005 (2023) [arXiv:2306.03330 [hep-th]].
  48. D. Chen, X. Jiang and H. Yang, “Holographic T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG deformed entanglement entropy in dS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT/CFT22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT,” [arXiv:2307.04673 [hep-th]].
  49. A. J. Parzygnat, T. Takayanagi, Y. Taki and Z. Wei, “SVD Entanglement Entropy,” [arXiv:2307.06531 [hep-th]].
  50. P. Z. He and H. Q. Zhang, “Timelike Entanglement Entropy from Rindler Method,” [arXiv:2307.09803 [hep-th]].
  51. W. z. Guo and J. Zhang, “Sum rule for pseudo Rényi entropy,” [arXiv:2308.05261 [hep-th]].
  52. F. Omidi, “Pseudo Rényi Entanglement Entropies For an Excited State and Its Time Evolution in a 2D CFT,” [arXiv:2309.04112 [hep-th]].
  53. A. Lewkowycz and J. Maldacena, “Generalized gravitational entropy,” JHEP 08, 090 (2013) doi:10.1007/JHEP08(2013)090 [arXiv:1304.4926 [hep-th]].
  54. X. Dong, A. Lewkowycz and M. Rangamani, “Deriving covariant holographic entanglement,” JHEP 11, 028 (2016) doi:10.1007/JHEP11(2016)028 [arXiv:1607.07506 [hep-th]].
  55. X. Dong, “The Gravity Dual of Renyi Entropy,” Nature Commun. 7, 12472 (2016) doi:10.1038/ncomms12472 [arXiv:1601.06788 [hep-th]].
  56. X. Dong, “Holographic Entanglement Entropy for General Higher Derivative Gravity,” JHEP 01, 044 (2014) doi:10.1007/JHEP01(2014)044 [arXiv:1310.5713 [hep-th]].
  57. H. Casini, M. Huerta and R. C. Myers, “Towards a derivation of holographic entanglement entropy,” JHEP 1105, 036 (2011) [arXiv:1102.0440 [hep-th]].
  58. N. Callebaut, “Entanglement in conformal field theory and holography,” [arXiv:2303.16827 [hep-th]].
  59. Y. Chen, V. Gorbenko and J. Maldacena, “Bra-ket wormholes in gravitationally prepared states,” JHEP 02, 009 (2021) doi:10.1007/JHEP02(2021)009 [arXiv:2007.16091 [hep-th]].
  60. K. Goswami, K. Narayan and H. K. Saini, “Cosmologies, singularities and quantum extremal surfaces,” JHEP 03, 201 (2022) doi:10.1007/JHEP03(2022)201 [arXiv:2111.14906 [hep-th]].
  61. K. Narayan, “On d⁢S4𝑑subscript𝑆4dS_{4}italic_d italic_S start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT extremal surfaces and entanglement entropy in some ghost CFTs,” Phys. Rev. D 94, no. 4, 046001 (2016) [arXiv:1602.06505 [hep-th]].
  62. D. P. Jatkar and K. Narayan, “Ghost-spin chains, entanglement and b⁢c𝑏𝑐bcitalic_b italic_c-ghost CFTs,” Phys. Rev. D 96, no. 10, 106015 (2017) [arXiv:1706.06828 [hep-th]].
  63. D. Harlow and D. Stanford, “Operator Dictionaries and Wave Functions in AdS/CFT and dS/CFT,” arXiv:1104.2621 [hep-th].
  64. J. Maldacena, G. J. Turiaci and Z. Yang, “Two dimensional Nearly de Sitter gravity,” JHEP 01, 139 (2021) doi:10.1007/JHEP01(2021)139 [arXiv:1904.01911 [hep-th]].
  65. B. Czech, J. L. Karczmarek, F. Nogueira and M. Van Raamsdonk, “The Gravity Dual of a Density Matrix,” Class. Quant. Grav.  29, 155009 (2012) doi:10.1088/0264-9381/29/15/155009 [arXiv:1204.1330 [hep-th]].
  66. A. C. Wall, “Maximin Surfaces, and the Strong Subadditivity of the Covariant Holographic Entanglement Entropy,” Class. Quant. Grav.  31, no. 22, 225007 (2014) [arXiv:1211.3494 [hep-th]].
  67. M. Headrick, V. E. Hubeny, A. Lawrence and M. Rangamani, “Causality & holographic entanglement entropy,” JHEP 1412, 162 (2014) doi:10.1007/JHEP12(2014)162 [arXiv:1408.6300 [hep-th]].
  68. D. Harlow, “TASI Lectures on the Emergence of Bulk Physics in AdS/CFT,” PoS TASI 2017, 002 (2018) doi:10.22323/1.305.0002 [arXiv:1802.01040 [hep-th]].
  69. M. Headrick, “Lectures on entanglement entropy in field theory and holography,” arXiv:1907.08126 [hep-th].
  70. A. Almheiri, X. Dong and D. Harlow, “Bulk Locality and Quantum Error Correction in AdS/CFT,” JHEP 1504, 163 (2015) doi:10.1007/JHEP04(2015)163 [arXiv:1411.7041 [hep-th]].
  71. D. L. Jafferis, A. Lewkowycz, J. Maldacena and S. J. Suh, “Relative entropy equals bulk relative entropy,” JHEP 1606, 004 (2016) doi:10.1007/JHEP06(2016)004 [arXiv:1512.06431 [hep-th]].
  72. X. Dong, D. Harlow and A. C. Wall, “Reconstruction of Bulk Operators within the Entanglement Wedge in Gauge-Gravity Duality,” Phys. Rev. Lett.  117, no. 2, 021601 (2016) [arXiv:1601.05416 [hep-th]].
  73. P. Hayden, M. Headrick and A. Maloney, “Holographic Mutual Information is Monogamous,” Phys. Rev. D 87, no.4, 046003 (2013) doi:10.1103/PhysRevD.87.046003 [arXiv:1107.2940 [hep-th]].
  74. V. Chandrasekaran, R. Longo, G. Penington and E. Witten, “An algebra of observables for de Sitter space,” JHEP 02, 082 (2023) doi:10.1007/JHEP02(2023)082 [arXiv:2206.10780 [hep-th]].
  75. J. B. Hartle and S. W. Hawking, “Wave Function of the Universe,” Phys. Rev. D 28, 2960-2975 (1983) doi:10.1103/PhysRevD.28.2960
  76. R. Bousso and S. W. Hawking, “The Probability for primordial black holes,” Phys. Rev. D 52, 5659-5664 (1995) doi:10.1103/PhysRevD.52.5659 [arXiv:gr-qc/9506047 [gr-qc]].
  77. R. Bousso and S. W. Hawking, “Pair creation of black holes during inflation,” Phys. Rev. D 54, 6312-6322 (1996) doi:10.1103/PhysRevD.54.6312 [arXiv:gr-qc/9606052 [gr-qc]].
  78. J. Maldacena, “Einstein Gravity from Conformal Gravity,” [arXiv:1105.5632 [hep-th]].
  79. T. Chakraborty, J. Chakravarty, V. Godet, P. Paul and S. Raju, “The Hilbert space of de Sitter quantum gravity,” [arXiv:2303.16315 [hep-th]].
  80. C. Holzhey, F. Larsen and F. Wilczek, “Geometric and renormalized entropy in conformal field theory,” Nucl. Phys. B 424, 443 (1994) [hep-th/9403108].
  81. P. Calabrese and J. L. Cardy, “Entanglement entropy and quantum field theory,” J. Stat. Mech.  0406, P06002 (2004) [hep-th/0405152].
  82. P. Calabrese and J. Cardy, “Entanglement entropy and conformal field theory,” J. Phys. A 42, 504005 (2009) doi:10.1088/1751-8113/42/50/504005 [arXiv:0905.4013 [cond-mat.stat-mech]].
  83. M. Van Raamsdonk, “Building up spacetime with quantum entanglement,” Gen. Rel. Grav. 42, 2323-2329 (2010) doi:10.1142/S0218271810018529 [arXiv:1005.3035 [hep-th]].
  84. M. Van Raamsdonk, “Comments on quantum gravity and entanglement,” [arXiv:0907.2939 [hep-th]].
  85. K. Fernandes, K. S. Kolekar, K. Narayan and S. Roy, “Schwarzschild de Sitter and extremal surfaces,” Eur. Phys. J. C 80, no.9, 866 (2020) doi:10.1140/epjc/s10052-020-08437-2 [arXiv:1910.11788 [hep-th]].
  86. M. Miyaji, “Island for gravitationally prepared state and pseudo entanglement wedge,” JHEP 12, 013 (2021) doi:10.1007/JHEP12(2021)013 [arXiv:2109.03830 [hep-th]].
Citations (13)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com