Tight conic approximation of testing regions for quantum statistical models and measurements (2309.16153v1)
Abstract: Quantum statistical models (i.e., families of normalized density matrices) and quantum measurements (i.e., positive operator-valued measures) can be regarded as linear maps: the former, mapping the space of effects to the space of probability distributions; the latter, mapping the space of states to the space of probability distributions. The images of such linear maps are called the testing regions of the corresponding model or measurement. Testing regions are notoriously impractical to treat analytically in the quantum case. Our first result is to provide an implicit outer approximation of the testing region of any given quantum statistical model or measurement in any finite dimension: namely, a region in probability space that contains the desired image, but is defined implicitly, using a formula that depends only on the given model or measurement. The outer approximation that we construct is minimal among all such outer approximations, and close, in the sense that it becomes the maximal inner approximation up to a constant scaling factor. Finally, we apply our approximation formulas to characterize, in a semi-device independent way, the ability to transform one quantum statistical model or measurement into another.
- Max O. Lorenz. Methods of measuring the concentration of wealth. Publ. Am. Stat. Assoc., 9(70):209–219, 1905.
- Inequalities. Cambridge university press, 1952.
- Barry C. Arnold. Majorization and the Lorenz Order: A Brief Introduction. Springer New York, 1987. doi:10.1007/978-1-4615-7379-1.
- Inequalities: theory of majorization and its applications. Springer, 2010.
- David Blackwell. Equivalent Comparisons of Experiments. The Annals of Mathematical Statistics, 24(2):265–272, 1953. URL: http://www.jstor.org/stable/2236332, doi:10.1214/aoms/1177729032.
- Theory of Games and Statistical Decisions. Dover Books on Mathematics. Dover Publications, 1979. URL: https://books.google.co.jp/books?id=fwTLAgAAQBAJ.
- Erik Torgersen. Comparison of Statistical Experiments. Encyclopedia of Mathematics and its Applications. Cambridge University Press, 1991. doi:10.1017/CBO9780511666353.
- Joseph M. Renes. Relative submajorization and its use in quantum resource theories. Journal of Mathematical Physics, 57(12):122202, 12 2016. arXiv:https://pubs.aip.org/aip/jmp/article-pdf/doi/10.1063/1.4972295/16083406/122202_1_online.pdf, doi:10.1063/1.4972295.
- F. Liese and K.-J. Miescke. Statistical Decision Theory. Springer, 2008.
- Quantum resource theories. Rev. Mod. Phys., 91:025001, Apr 2019. URL: https://link.aps.org/doi/10.1103/RevModPhys.91.025001, doi:10.1103/RevModPhys.91.025001.
- Francesco Buscemi. Comparison of quantum statistical models: Equivalent conditions for sufficiency. Communications in Mathematical Physics, 310(3):625–647, 2012. doi:10.1007/s00220-012-1421-3.
- Anna Jencova. Comparison of quantum channels and statistical experiments, 2015. URL: https://arxiv.org/abs/1512.07016, doi:10.48550/ARXIV.1512.07016.
- Quantum relative lorenz curves. Phys. Rev. A, 95:012110, Jan 2017. URL: https://link.aps.org/doi/10.1103/PhysRevA.95.012110, doi:10.1103/PhysRevA.95.012110.
- Francesco Buscemi. All entangled quantum states are nonlocal. Phys. Rev. Lett., 108:200401, May 2012. URL: https://link.aps.org/doi/10.1103/PhysRevLett.108.200401, doi:10.1103/PhysRevLett.108.200401.
- Francesco Buscemi. Fully quantum second-law–like statements from the theory of statistical comparisons, 2015. URL: https://arxiv.org/abs/1505.00535, doi:10.48550/ARXIV.1505.00535.
- Quantum majorization and a complete set of entropic conditions for quantum thermodynamics. Nature Communications, 9(1):5352, 2018. doi:10.1038/s41467-018-06261-7.
- Complete resource theory of quantum incompatibility as quantum programmability. Phys. Rev. Lett., 124:120401, Mar 2020. URL: https://link.aps.org/doi/10.1103/PhysRevLett.124.120401, doi:10.1103/PhysRevLett.124.120401.
- Unifying different notions of quantum incompatibility into a strict hierarchy of resource theories of communication, 2022. URL: https://arxiv.org/abs/2211.09226, doi:10.48550/ARXIV.2211.09226.
- A complete and operational resource theory of measurement sharpness, 2023. arXiv:2303.07737.
- Stochasticity and Partial Order Doubly Stochastic Maps and Unitary Mixing. Springer Netherlands, 1982.
- Extension of the Alberti-Ulhmann criterion beyond qubit dichotomies. Quantum, 4:233, February 2020. doi:10.22331/q-2020-02-20-233.
- Bounding the joint numerical range of pauli strings by graph parameters, 2023. arXiv:2308.00753.
- Morphophoric POVMs, generalised qplexes, and 2-designs. Quantum, 4:338, September 2020. doi:10.22331/q-2020-09-30-338.
- Clean positive operator valued measures. Journal of Mathematical Physics, 46(8):082109, 2005. arXiv:https://doi.org/10.1063/1.2008996, doi:10.1063/1.2008996.
- Device-independent tests of quantum measurements. Phys. Rev. Lett., 118:250501, Jun 2017. URL: https://link.aps.org/doi/10.1103/PhysRevLett.118.250501, doi:10.1103/PhysRevLett.118.250501.
- Measures of scalability. IEEE Transactions on Information Theory, 61(8):4410–4423, 2015. doi:10.1109/TIT.2015.2441071.
- Shayne FD Waldron. An introduction to finite tight frames. Springer, 2018.
- S.P. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004. URL: https://books.google.co.jp/books?id=mYm0bLd3fcoC.
- Keith Ball. Ellipsoids of maximal volume in convex bodies. Geometriae Dedicata, 41(2):241–250, 1992. doi:10.1007/BF00182424.
- Michele Dall’Arno. Device-independent tests of quantum states. Phys. Rev. A, 99:052353, May 2019. URL: https://link.aps.org/doi/10.1103/PhysRevA.99.052353, doi:10.1103/PhysRevA.99.052353.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.