Linear Progressive Coding for Semantic Communication using Deep Neural Networks (2309.15959v1)
Abstract: We propose a general method for semantic representation of images and other data using progressive coding. Semantic coding allows for specific pieces of information to be selectively encoded into a set of measurements that can be highly compressed compared to the size of the original raw data. We consider a hierarchical method of coding where a partial amount of semantic information is first encoded a into a coarse representation of the data, which is then refined by additional encodings that add additional semantic information. Such hierarchical coding is especially well-suited for semantic communication i.e. transferring semantic information over noisy channels. Our proposed method can be considered as a generalization of both progressive image compression and source coding for semantic communication. We present results from experiments on the MNIST and CIFAR-10 datasets that show that progressive semantic coding can provide timely previews of semantic information with a small number of initial measurements while achieving overall accuracy and efficiency comparable to non-progressive methods.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.