Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-unit soft sensing permits few-shot learning (2309.15828v2)

Published 27 Sep 2023 in stat.ML and cs.LG

Abstract: Recent literature has explored various ways to improve soft sensors by utilizing learning algorithms with transferability. A performance gain is generally attained when knowledge is transferred among strongly related soft sensor learning tasks. A particularly relevant case for transferability is when developing soft sensors of the same type for similar, but physically different processes or units. Then, the data from each unit presents a soft sensor learning task, and it is reasonable to expect strongly related tasks. Applying methods that exploit transferability in this setting leads to what we call multi-unit soft sensing. This paper formulates multi-unit soft sensing as a probabilistic, hierarchical model, which we implement using a deep neural network. The learning capabilities of the model are studied empirically on a large-scale industrial case by developing virtual flow meters (a type of soft sensor) for 80 petroleum wells. We investigate how the model generalizes with the number of wells/units. Interestingly, we demonstrate that multi-unit models learned from data from many wells, permit few-shot learning of virtual flow meters for new wells. Surprisingly, regarding the difficulty of the tasks, few-shot learning on 1-3 data points often leads to high performance on new wells.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. doi:https://doi.org/10.1007/978-1-84628-480-9.
  2. doi:10.1016/j.compchemeng.2008.12.012.
  3. doi:10.1109/JSEN.2020.3033153.
  4. doi:10.1109/TNNLS.2019.2957366.
  5. doi:10.1109/TII.2021.3053128. URL https://ieeexplore.ieee.org/document/9329169/
  6. doi:10.1109/TII.2022.3181692. URL https://ieeexplore.ieee.org/document/9794453/
  7. doi:10.1109/ACCESS.2017.2756872.
  8. arXiv:2107.13822, doi:10.1016/j.ces.2022.117459.
  9. doi:10.3390/app11167710.
  10. doi:10.1016/j.petrol.2019.106487.
  11. doi:10.3390/s19092184.
  12. Schlumberger, Olga dynamic multiphase flow simulator. URL https://www.slb.com/products-and-services/delivering-digital-at-scale/software/olga/olga-dynamic-multiphase-flow-simulator
  13. TechnipFMC, Flowmanager product suite. URL https://www.technipfmc.com/en/what-we-do/subsea/life-of-field-services/field-performance-services/
  14. Petroleum Experts, Prosper multiphase well and pipeline nodal analysis. URL https://www.petex.com/pe-engineering/ipm-suite/prosper/
  15. Kongsberg Digital, Ledaflow multiphase flow simulator. URL https://ledaflow.com/
  16. arXiv:2103.08713, doi:10.1016/j.knosys.2021.107458.
  17. doi:10.1016/j.eswa.2022.118382. URL https://doi.org/10.1016/j.eswa.2022.118382
  18. doi:10.3390/pr9040667.
  19. doi:10.1109/JIOT.2016.2579198.
  20. doi:10.1109/TIM.2023.3267520.
  21. doi:10.1109/TKDE.2009.191.
  22. doi:10.1109/TKDE.2021.3070203.
  23. doi:10.1109/TII.2022.3202909.
  24. doi:10.1109/TNNLS.2021.3085869. URL https://ieeexplore.ieee.org/document/9454563/
  25. doi:10.1016/j.conengprac.2023.105726.
  26. doi:10.1016/j.jprocont.2023.02.003.
  27. doi:10.1016/j.chemolab.2019.103813.
  28. doi:10.1016/j.measurement.2020.108158.
  29. doi:10.1109/TIM.2022.3225056.
  30. doi:10.1038/323533a0.
  31. doi:10.1137/16M1080173.
  32. doi:10.1016/j.asoc.2021.107776.
  33. doi:10.4043/25764-MS.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets