Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Merging Parameter Estimation and Classification Using LASSO (2405.03783v2)

Published 6 May 2024 in eess.SY and cs.SY

Abstract: Soft sensing is a way to indirectly obtain information of signals for which direct sensing is difficult or prohibitively expensive. It may not \textit{a priori} be evident which sensors provide useful information about the target signal, and various operating conditions often necessitate different models. In this paper, we provide a systematic method to construct a soft sensor that can deal with these issues. We propose a single estimation criterion, where the objectives are encoded in terms of model fit, model sparsity (reducing the number of different models), and model parameter coefficient sparsity (to exclude irrelevant sensors). The proposed method is tested on real-world scenarios involving prototype vehicles, demonstrating its effectiveness.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (16)
  1. E. Risaliti, J. Van Cauteren, T. Tamarozzi, B. Cornelis, and W. Desmet, “Virtual sensing of wheel center forces by means of a linear state estimator,” in International Conference on Noise and Vibration Engineering (ISMA2016), Leuven, Belgium, 2016.
  2. X. Zhu and W. Li, “Takagi–sugeno fuzzy model based shaft torque estimation for integrated motor–transmission system,” ISA transactions, vol. 93, pp. 14–22, 2019.
  3. Y. Jiang, S. Yin, J. Dong, and O. Kaynak, “A review on soft sensors for monitoring, control, and optimization of industrial processes,” IEEE Sensors Journal, vol. 21, no. 11, pp. 12 868–12 881, 2020.
  4. Y. Wang, X. Zheng, L. Wang, G. Lu, Y. Jia, Y. Qiu, and M. Li, “Edge-computing based soft sensors with local finite impulse response models for vehicle wheel center loads estimation under multiple working conditions,” Control Engineering Practice, vol. 133, p. 105447, 2023.
  5. D. Wang, J. Gong, Q. Kang, D. Fan, and J. Yang, “Soft sensing for gas-condensate field production using parallel-genetic-algorithm-based data reconciliation,” Journal of Computing and Information Science in Engineering, vol. 19, no. 4, p. 044501, 2019.
  6. X. Fang, X. Li, and L. Xie, “3-d distributed localization with mixed local relative measurements,” IEEE Transactions on Signal Processing, vol. 68, pp. 5869–5881, 2020.
  7. P. Kadlec, B. Gabrys, and S. Strandt, “Data-driven soft sensors in the process industry,” Computers & chemical engineering, vol. 33, no. 4, pp. 795–814, 2009.
  8. J. Kang, Z. Shao, X. Chen, X. Gu, and L. Feng, “Fast and reliable computational strategy for developing a rigorous model-driven soft sensor of dynamic molecular weight distribution,” Journal of Process Control, vol. 56, pp. 79–99, 2017.
  9. L. Wang, X. Zheng, Y. Wang, Y. Qiu, and M. Li, “A hybrid data-driven soft sensor framework for torque estimation,” IEEE Sensors Journal, 2023.
  10. X. Zheng, Y. Wang, L. Wang, R. Cai, M. Li, and Y. Qiu, “Data-driven sensor selection for signal estimation of vertical wheel forces in vehicles,” Journal of Computing and Information Science in Engineering, vol. 23, no. 3, p. 031010, 2023.
  11. N. Rao, R. Nowak, C. Cox, and T. Rogers, “Classification with the sparse group lasso,” IEEE Transactions on Signal Processing, vol. 64, no. 2, pp. 448–463, 2015.
  12. D. Ghosh and A. M. Chinnaiyan, “Classification and selection of biomarkers in genomic data using lasso,” Journal of Biomedicine and Biotechnology, vol. 2005, no. 2, p. 147, 2005.
  13. Y. Huo, L. Xin, C. Kang, M. Wang, Q. Ma, and B. Yu, “Sgl-svm: a novel method for tumor classification via support vector machine with sparse group lasso,” Journal of Theoretical Biology, vol. 486, p. 110098, 2020.
  14. R. Tibshirani, “Regression shrinkage and selection via the LASSO,” Journal of the Royal Statistical Society. Series B, vol. 58, no. 1, pp. 267–288, 1996.
  15. M. Yuan and Y. Lin, “Model selection and estimation in regression with grouped variables,” Journal of the Royal Statistical Society. Series B, vol. 68, no. 1, pp. 49–67, 2006.
  16. L. Yuan, J. Liu, and J. Ye, “Efficient methods for overlapping group lasso,” Advances in neural information processing systems, vol. 24, 2011.

Summary

We haven't generated a summary for this paper yet.