Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

STRAW: Structure-Adaptive Weighting Procedure for Large-Scale Spatial Multiple Testing (2309.15699v1)

Published 27 Sep 2023 in stat.ME, math.ST, and stat.TH

Abstract: The problem of large-scale spatial multiple testing is often encountered in various scientific research fields, where the signals are usually enriched on some regions while sparse on others. To integrate spatial structure information from nearby locations, we propose a novel approach, called {\bf STR}ucture-{\bf A}daptive {\bf W}eighting (STRAW) procedure, for large-scale spatial multiple testing. The STRAW procedure is capable of handling a broad range of spatial settings by leveraging a class of weighted p-values and is fully data-driven. Theoretical results show that the proposed method controls the false discovery rate (FDR) at the pre-specified level under some mild conditions. In practice, the local sparsity level, defined as the probability of the null hypothesis being not true, is commonly unknown. To address this issue, we develop a new method for estimating the local sparsity level by employing the kernel-smooth local false discovery rate (Lfdr) statistic. The superior numerical performance of the STRAW procedure is demonstrated by performing extensive simulation studies and a real data analysis.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.