Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Nonperturbative aspects of two-dimensional $T\bar{T}$-deformed scalar theory from functional renormalization group (2309.15584v3)

Published 27 Sep 2023 in hep-th

Abstract: We study $T\bar{T}$-deformed $O(N)$ scalar field theory in two-dimensional spacetime using the functional renormalization group. We derive the $\beta$ functions for the couplings in the system and explore the fixed points. In addition to the Gaussian (trivial) fixed point, we find a nontrivial fixed point at which a new universality class exists. The deformation parameter becomes relevant at the nontrivial fixed point. Therefore, the $T\bar T$-deformed scalar field theory in two-dimensional spacetime could be defined as a nonperturbatively renormalizable theory.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. A. B. Zamolodchikov,   (2004), arXiv:hep-th/0401146 .
  2. F. A. Smirnov and A. B. Zamolodchikov, Nucl. Phys. B 915, 363 (2017), arXiv:1608.05499 [hep-th] .
  3. Y. Jiang, Commun. Theor. Phys. 73, 057201 (2021), arXiv:1904.13376 [hep-th] .
  4. S. He and H. Shu, JHEP 02, 088 (2020), arXiv:1907.12603 [hep-th] .
  5. S. He and Y. Sun, Phys. Rev. D 102, 026023 (2020), arXiv:2004.07486 [hep-th] .
  6. S. He, Sci. China Phys. Mech. Astron. 64, 291011 (2021), arXiv:2012.06202 [hep-th] .
  7. S. He and Y.-Z. Li, Sci. China Phys. Mech. Astron. 66, 251011 (2023), arXiv:2202.04810 [hep-th] .
  8. J. Cardy, JHEP 10, 186 (2018), arXiv:1801.06895 [hep-th] .
  9. V. Rosenhaus and M. Smolkin, Phys. Rev. D 102, 065009 (2020), arXiv:1909.02640 [hep-th] .
  10. A. Dey and A. Fortinsky, JHEP 12, 200 (2021), arXiv:2109.10525 [hep-th] .
  11. A. LeClair, J. Stat. Mech. 2111, 113104 (2021), arXiv:2107.02230 [hep-th] .
  12. K. G. Wilson and J. B. Kogut, Phys. Rept. 12, 75 (1974).
  13. C. Wetterich, Phys. Lett. B301, 90 (1993), arXiv:1710.05815 [hep-th] .
  14. D. F. Litim, Phys. Rev. D64, 105007 (2001), arXiv:hep-th/0103195 [hep-th] .
  15. A. Hasenfratz and P. Hasenfratz, Nucl. Phys. B 270, 687 (1986).
  16. T. R. Morris, Phys. Lett. B 334, 355 (1994), arXiv:hep-th/9405190 .
  17. M. Reuter and F. Saueressig, New J. Phys. 14, 055022 (2012), arXiv:1202.2274 [hep-th] .
  18. A. B. Zamolodchikov, JETP Lett. 43, 730 (1986).
  19. S. R. Coleman, Commun. Math. Phys. 31, 259 (1973).
  20. P. C. Hohenberg, Phys. Rev. 158, 383 (1967).
  21. N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.