Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Strong pairing from small Fermi surface beyond weak coupling: Application to La$_3$Ni$_2$O$_7$ (2309.15095v4)

Published 26 Sep 2023 in cond-mat.str-el and cond-mat.supr-con

Abstract: The studies of high-temperature superconductors raise a fundamental question: Can a small Fermi surface phase, which violates the Luttinger theorem, exist and give rise to superconductivity? Our work provides a positive answer through a controlled theory based on a bilayer model with strong inter-layer spin-spin coupling ($J_\perp$) but no inter-layer hopping ($t_\perp$). Then small hole doping of the rung-singlet insulator with two electrons per rung naturally leads to small hole pockets with Fermi surface volume per flavor smaller than the free fermion result by $1/2$ of the Brillouin zone(BZ). We construct a new t-J model on a bilayer square lattice, so called ESD t-J model and employ a generalized slave boson theory, which captures this small Fermi surface phase at small hole doping $x$. This metallic state is an intrinsically strongly correlated Fermi liquid beyond weak coupling theory, violating the perturbative Luttinger theorem but consistent with the Oshikawa's non-perturbative proof. We further show that it transitions into an inter-layer paired $s'$-wave superconductor at lower temperature through Feshbach resonance with a virtual Cooper pair, with a surprising doping-induced crossover from Bardeen-Cooper-Schrieffer (BCS) to Bose-Einstein condensation (BEC) at higher hole doping levels. This leads to a superconducting dome centered around $x=0.5$, with the normal state changing from the conventional Fermi liquid in the $x>0.5$ to the unusual small Fermi surface state in the $x<0.5$ side. Our theoretical findings including phase diagrams are also confirmed by density matrix renormalization group (DMRG) simulation in quasi one dimension. Applying our theoretical framework, we provide a plausible scenario for the recently found nickelate La$_3$Ni$_2$O$_7$ materials.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. P. W. Anderson, science 235, 1196 (1987).
  2. C. Proust and L. Taillefer, Annual Review of Condensed Matter Physics 10, 409 (2019), https://doi.org/10.1146/annurev-conmatphys-031218-013210 .
  3. Y.-H. Zhang and S. Sachdev, Physical Review Research 2, 023172 (2020).
  4. J. Wang and Y.-Z. You, Symmetry 14, 1475 (2022).
  5. M. Oshikawa, Physical Review Letters 84, 3370 (2000).
  6. V. Crépel and L. Fu, Science Advances 7, eabh2233 (2021).
  7. Y. Cao and Y.-f. Yang, arXiv preprint arXiv:2307.06806  (2023).
  8. Q. Qin and Y.-f. Yang, arXiv preprint arXiv:2308.09044  (2023).
  9. Q. Qin and Y.-f. Yang, arXiv e-prints , arXiv:2308.09044 (2023), arXiv:2308.09044 [cond-mat.supr-con] .
  10. H. Oh and Y.-H. Zhang, arXiv preprint arXiv:2307.15706  (2023).
  11. C. Lu, Z. Pan, F. Yang,  and C. Wu, “Interlayer coupling driven high-temperature superconductivity in la33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPTni22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPTo77{}_{7}start_FLOATSUBSCRIPT 7 end_FLOATSUBSCRIPT under pressure,”  (2023c), arXiv:2307.14965 [cond-mat.supr-con] .
  12. Y.-H. Zhang and A. Vishwanath, Physical Review Research 2, 023112 (2020).
  13. Y.-H. Zhang and Z. Zhu, Physical Review B 103, 115101 (2021).
  14. Y.-H. Zhang and A. Vishwanath, Physical Review B 106, 045103 (2022).
  15. Y.-H. Zhang and D. Mao, Physical Review B 101, 035122 (2020).
  16. C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005).
  17. V. Gurarie and L. Radzihovsky, Annals of Physics 322, 2 (2007), january Special Issue 2007.
  18. D. E. Sheehy and L. Radzihovsky, Annals of Physics 322, 1790 (2007).
  19. D. E. Sheehy and L. Radzihovsky, Phys. Rev. Lett. 96, 060401 (2006).
  20. S. R. White, Phys. Rev. Lett. 69, 2863 (1992).
  21. J. Hauschild and F. Pollmann, SciPost Phys. Lect. Notes , 5 (2018).
  22. A. Luther and V. J. Emery, Phys. Rev. Lett. 33, 589 (1974).
  23. It is quite challenging to determine whether a gap is truly zero or finite but very small.
  24. H. Yang and Y.-H. Zhang, arXiv e-prints , arXiv:2305.01702 (2023), arXiv:2305.01702 [cond-mat.str-el] .
  25. W. Zwerger, The BCS-BEC crossover and the unitary Fermi gas, Vol. 836 (Springer Science & Business Media, 2011).
  26. S. Rommer and S. Östlund, Phys. Rev. B 55, 2164 (1997).
  27. S. Östlund and S. Rommer, Phys. Rev. Lett. 75, 3537 (1995).
Citations (10)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube