Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the variation of the sum of digits in the Zeckendorf representation: an algorithm to compute the distribution and mixing properties (2309.14285v2)

Published 25 Sep 2023 in math.PR and math.NT

Abstract: We study probability measures defined by the variation of the sum of digits in the Zeckendorf representation. For $r\ge 0$ and $d\in\mathbb{Z}$, we consider $\mu{(r)}(d)$ the density of integers $n\in\mathbb{N}$ for which the sum of digits increases by $d$ when $r$ is added to $n$. We give a probabilistic interpretation of $\mu{(r)}$ via the dynamical system provided by the odometer of Zeckendorf-adic integers and its unique invariant measure. We give an algorithm for computing $\mu{(r)}$ and we deduce a control on the tail of the negative distribution of $\mu{(r)}$, as well as the formula $\mu{(F_{\ell})} = \mu{(1)}$ where $F_{\ell}$ is a term in the Fibonacci sequence. Finally, we decompose the Zeckendorf representation of an integer $r$ into so-called "blocks" and show that when added to an adic Zeckendorf integer, the successive actions of these blocks can be seen as a sequence of mixing random variables.

Summary

We haven't generated a summary for this paper yet.