Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A central limit theorem for the variation of the sum of digits (2111.05030v2)

Published 9 Nov 2021 in math.PR

Abstract: We prove a Central Limit Theorem for probability measures defined via the variation of the sum-of-digits function, in base $b\ge 2$. For $r\ge 0$ and $d \in \mathbb{Z}$, we consider $\mu{(r)}(d)$ as the density of integers $n\in \mathbb{N}$ for which the sum of digits increases by $d$ when we add $r$ to $n$. We give a probabilistic interpretation of $\mu{(r)}$ on the probability space given by the group of $b$-adic integers equipped with the normalized Haar measure. We split the base-$b$ expansion of the integer $r$ into so-called "blocks", and we consider the asymptotic behaviour of $\mu{(r)}$ as the number of blocks goes to infinity. We show that, up to renormalization, $\mu{(r)}$ converges to the standard normal law as the number of blocks of $r$ grows to infinity. We provide an estimate of the speed of convergence. The proof relies, in particular, on a $\phi$-mixing process defined on the $b$-adic integers.

Summary

We haven't generated a summary for this paper yet.