Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Universal Gravitational Waves from Interacting and Clustered Solitons (2309.14193v2)

Published 25 Sep 2023 in astro-ph.CO, gr-qc, and hep-ph

Abstract: Causal soliton formation (e.g. oscillons, Q-balls) in the primordial Universe is expected to give rise to a universal gravitational wave (GW) background, at frequencies smaller than scales of nonlinearity. We show that modifications of the soliton density field, driven by soliton interactions or initial conditions, can significantly enhance universal GWs. Gravitational clustering of solitons naturally leads to generation of correlations in the large-scale soliton density field. As we demonstrate for axion-like particle (ALP) oscillons, the growing power spectrum amplifies universal GW signals, opening new avenues for probing the physics of the early Universe with upcoming GW experiments. Our results are applicable to variety of scenarios, such as solitons interacting through a long range Yukawa-like fifth force.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. A. Vilenkin and E. P. S. Shellard, Cosmic Strings and Other Topological Defects (Cambridge University Press, 2000).
  2. Y. M. Shnir, Topological and Non-Topological Solitons in Scalar Field Theories (Cambridge University Press, 2018).
  3. T. W. B. Kibble, J. Phys. A 9, 1387 (1976).
  4. W. H. Zurek, Nature 317, 505 (1985).
  5. K. D. Lozanov and M. A. Amin, Phys. Rev. D 99, 123504 (2019), arXiv:1902.06736 [astro-ph.CO] .
  6. C. Caprini and D. G. Figueroa, Class. Quant. Grav. 35, 163001 (2018), arXiv:1801.04268 [astro-ph.CO] .
  7. H. Kodama and M. Sasaki, Prog. Theor. Phys. Suppl. 78, 1 (1984).
  8. H. Kodama and M. Sasaki, Int. J. Mod. Phys. A 2, 491 (1987).
  9. N. Aghanim et al. (Planck), Astron. Astrophys. 641, A6 (2020), [Erratum: Astron.Astrophys. 652, C4 (2021)], arXiv:1807.06209 [astro-ph.CO] .
  10. M. A. Amin and P. Mocz, Phys. Rev. D 100, 063507 (2019), arXiv:1902.07261 [astro-ph.CO] .
  11. K. D. Lozanov and V. Takhistov, Phys. Rev. Lett. 130, 181002 (2023), arXiv:2204.07152 [astro-ph.CO] .
  12. K. Abazajian et al.,   (2019), arXiv:1907.04473 [astro-ph.IM] .
  13. K. Schmitz, JHEP 01, 097 (2021), arXiv:2002.04615 [hep-ph] .
  14. B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. Lett. 116, 131102 (2016), arXiv:1602.03847 [gr-qc] .
  15. D. Layzer, Astrophys. J.  138, 174 (1963).
  16. W. C. Saslaw, Astrophys. J.  235, 299 (1980).
  17. T. Suyama and S. Yokoyama, PTEP 2019, 103E02 (2019), arXiv:1906.04958 [astro-ph.CO] .
  18. G. Domènech and M. Sasaki, JCAP 06, 030 (2021), arXiv:2104.05271 [hep-th] .
Citations (13)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.