Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Privacy-preserving Linear Computations in Spiking Neural P Systems (2309.13803v1)

Published 25 Sep 2023 in cs.CR and cs.AI

Abstract: Spiking Neural P systems are a class of membrane computing models inspired directly by biological neurons. Besides the theoretical progress made in this new computational model, there are also numerous applications of P systems in fields like formal verification, artificial intelligence, or cryptography. Motivated by all the use cases of SN P systems, in this paper, we present a new privacy-preserving protocol that enables a client to compute a linear function using an SN P system hosted on a remote server. Our protocol allows the client to use the server to evaluate functions of the form t_1k + t_2 without revealing t_1, t_2 or k and without the server knowing the result. We also present an SN P system to implement any linear function over natural numbers and some security considerations of our protocol in the honest-but-curious security model.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. Processes 9(3), p. 511, 10.3390/pr9030511.
  2. International Journal of Unconventional Computing 16.
  3. In: Handbook of Unconventional Computing: VOLUME 1: Theory, World Scientific, pp. 261–339, 10.1142/9789811235726_0008.
  4. Daniel Díaz-Pernil, Miguel A Gutiérrez-Naranjo & Hong Peng (2019): Membrane computing and image processing: a short survey. Journal of Membrane Computing 1, pp. 58–73, 10.1007/s41965-018-00002-x.
  5. Daniel Díaz-Pernil, Francisco Pena-Cantillana & Miguel A Gutiérrez-Naranjo (2013): A parallel algorithm for skeletonizing images by using spiking neural P systems. Neurocomputing 115, pp. 81–91, 10.1016/j.neucom.2012.12.032.
  6. Taher ElGamal (1985): A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE transactions on information theory 31(4), pp. 469–472, 10.1109/TIT.1985.1057074.
  7. Journal of Membrane Computing 3, pp. 22–34, 10.1007/s41965-021-00073-3.
  8. Oded Goldreich (2004): Foundations of Cryptography, Volume 2. Cambridge university press Cambridge, 10.1017/CBO9780511721656.
  9. Ping Guo & Wei Xu (2016): A family P system of realizing RSA algorithm. In: Bio-inspired Computing–Theories and Applications: 11th International Conference, BIC-TA 2016, Xi’an, China, October 28-30, 2016, Revised Selected Papers, Part I 11, Springer, pp. 155–167, 10.1007/978-981-10-3611-8_16.
  10. Ping Guo & Wei Xu (2017): Implementation of RSA algorithm based on P system. Journal of Computational and Theoretical Nanoscience 14(9), pp. 4227–4235, 10.1166/jctn.2017.6723.
  11. Mihai Ionescu, Gheorghe Păun & Takashi Yokomori (2006): Spiking neural P systems. Fundamenta informaticae 71(2-3), pp. 279–308.
  12. Paulo Martins, Leonel Sousa & Artur Mariano (2017): A survey on fully homomorphic encryption: An engineering perspective. ACM Computing Surveys (CSUR) 50(6), pp. 1–33, 10.1145/3124441.
  13. International journal of neural systems 27(08), p. 1750042, 10.1142/S0129065717500423.
  14. Linqiang Pan & Mario J Pérez-Jiménez (2010): Computational complexity of tissue-like P systems. Journal of Complexity 26(3), pp. 296–315, 10.1016/j.jco.2010.03.001.
  15. Linqiang Pan, Jun Wang & Hendrik Jan Hoogeboom (2012): Spiking neural P systems with astrocytes. Neural Computation 24(3), pp. 805–825, 10.1162/NECO_a_00238.
  16. Gheorghe Păun (2000): Computing with membranes. Journal of Computer and System Sciences 61(1), pp. 108–143, 10.1006/jcss.1999.1693.
  17. Andrew Paverd, Andrew Martin & Ian Brown (2014): Modelling and automatically analysing privacy properties for honest-but-curious adversaries. Tech. Rep.
  18. The Scientific World Journal 2015, 10.1155/2015/929471.
  19. Information Sciences 304, pp. 80–91, 10.1016/j.ins.2015.01.019.
  20. Pattern Recognition Letters 68, pp. 34–40, 10.1016/j.patrec.2015.08.008.
  21. Journal of Membrane Computing 4(4), pp. 341–351, 10.1007/s41965-022-00110-9.
  22. IEEE Transactions on Cognitive and Developmental Systems 10(4), pp. 1106–1115, 10.1109/TCDS.2017.2785332.
  23. Răzvan Vasile, Marian Gheorghe & Ionuț Mihai Niculescu (2023): Breaking RSA Encryption Protocol with Kernel P Systems. 10.21203/rs.3.rs-2684530/v1.
  24. IEEE transactions on neural networks and learning systems 29(8), pp. 3349–3360, 10.1109/TNNLS.2017.2726119.
  25. In: Bio-inspired Computing–Theories and Applications: 11th International Conference, BIC-TA 2016, Xi’an, China, October 28-30, 2016, Revised Selected Papers, Part I 11, Springer, pp. 314–335, 10.1007/978-981-10-3611-8_26.
  26. Claudio Zandron, Claudio Ferretti & Giancarlo Mauri (2001): Solving NP-complete problems using P systems with active membranes. In: Unconventional Models of Computation, UMC’2K: Proceedings of the Second International Conference on Unconventional Models of Computation,(UMC’2K), Springer, pp. 289–301, 10.1007/978-1-4471-0313-4_21.
  27. Ge-Xiang Zhang, Marian Gheorghe & Chao-Zhong Wu (2008): A quantum-inspired evolutionary algorithm based on P systems for knapsack problem. Fundamenta Informaticae 87(1), pp. 93–116.
  28. Ge-Xiang Zhang & Lin-Qiang Pan (2010): A survey of membrane computing as a new branch of natural computing. Chinese journal of computers 33(2), pp. 208–214, 10.3724/SP.J.1016.2010.00208.
  29. Gexiang Zhang, Mario J Pérez-Jiménez & Marian Gheorghe (2017): Real-life applications with membrane computing. 25, Springer, 10.1007/978-3-319-55989-6.

Summary

We haven't generated a summary for this paper yet.