Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Robustly Stable Accelerated Momentum Methods With A Near-Optimal L2 Gain and $H_\infty$ Performance (2309.11481v5)

Published 20 Sep 2023 in math.OC

Abstract: We consider the problem of minimizing a strongly convex smooth function where the gradients are subject to additive worst-case deterministic errors that are square-summable. We study the trade-offs between the convergence rate and robustness to gradient errors when designing the parameters of a first-order algorithm. We focus on a general class of momentum methods (GMM) with constant stepsize and momentum parameters which can recover gradient descent, Nesterov's accelerated gradient, the heavy-ball and the triple momentum methods as special cases. We measure the robustness of an algorithm in terms of the cumulative suboptimality over the iterations divided by the $\ell_2$ norm of the gradient errors, which can be interpreted as the minimal (induced) $\ell_2$ gain of a transformed dynamical system that represents the GMM iterations where the input is the gradient error sequence and the output is a weighted distance to the optimum. For quadratic objectives, we compute the induced $\ell_2$ gain explicitly leveraging its connections to the $H_\infty$ norm of the dynamical system corresponding to GMM and construct worst-case gradient error sequences by a closed-form formula. We also study the stability of GMM with respect to multiplicative noise in various settings by characterizing the structured real and stability radius of the GMM system through their connections to the $H_\infty$ norm. This allows us to compare GD, HB, NAG methods in terms of robustness, and argue that HB is not as robust as NAG despite being the fastest...

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube