Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Containing Analog Data Deluge at Edge through Frequency-Domain Compression in Collaborative Compute-in-Memory Networks (2309.11048v1)

Published 20 Sep 2023 in cs.LG

Abstract: Edge computing is a promising solution for handling high-dimensional, multispectral analog data from sensors and IoT devices for applications such as autonomous drones. However, edge devices' limited storage and computing resources make it challenging to perform complex predictive modeling at the edge. Compute-in-memory (CiM) has emerged as a principal paradigm to minimize energy for deep learning-based inference at the edge. Nevertheless, integrating storage and processing complicates memory cells and/or memory peripherals, essentially trading off area efficiency for energy efficiency. This paper proposes a novel solution to improve area efficiency in deep learning inference tasks. The proposed method employs two key strategies. Firstly, a Frequency domain learning approach uses binarized Walsh-Hadamard Transforms, reducing the necessary parameters for DNN (by 87% in MobileNetV2) and enabling compute-in-SRAM, which better utilizes parallelism during inference. Secondly, a memory-immersed collaborative digitization method is described among CiM arrays to reduce the area overheads of conventional ADCs. This facilitates more CiM arrays in limited footprint designs, leading to better parallelism and reduced external memory accesses. Different networking configurations are explored, where Flash, SA, and their hybrid digitization steps can be implemented using the memory-immersed scheme. The results are demonstrated using a 65 nm CMOS test chip, exhibiting significant area and energy savings compared to a 40 nm-node 5-bit SAR ADC and 5-bit Flash ADC. By processing analog data more efficiently, it is possible to selectively retain valuable data from sensors and alleviate the challenges posed by the analog data deluge.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. J. Chen and X. Ran, “Deep learning with edge computing: A review,” Proceedings of the IEEE, vol. 107, no. 8, pp. 1655–1674, 2019.
  2. S. Tayebati and K. T. Cho, “A hybrid machine learning framework for clad characteristics prediction in metal additive manufacturing,” 2023.
  3. M. Hassanalieragh, A. Page, T. Soyata, G. Sharma, M. Aktas, G. Mateos, B. Kantarci, and S. Andreescu, “Health monitoring and management using internet-of-things (iot) sensing with cloud-based processing: Opportunities and challenges,” in 2015 IEEE international conference on services computing.   IEEE, 2015, pp. 285–292.
  4. F. Yu, L. Cui, P. Wang, C. Han, R. Huang, and X. Huang, “Easiedge: A novel global deep neural networks pruning method for efficient edge computing,” IEEE Internet of Things Journal, vol. 8, no. 3, pp. 1259–1271, 2020.
  5. R. Sehgal and J. P. Kulkarni, “Trends in analog and digital intensive compute-in-sram designs,” in IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS), 2021.
  6. S. Yu, H. Jiang, S. Huang, X. Peng, and A. Lu, “Compute-in-memory chips for deep learning: Recent trends and prospects,” IEEE Circuits and Systems Magazine, 2021.
  7. S. Jung, J. Lee, H. Noh, J.-H. Yoon, and J. Kung, “Dualpim: A dual-precision and low-power cnn inference engine using sram-and edram-based processing-in-memory arrays,” in IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS), 2022.
  8. S. Xie, C. Ni, A. Sayal, P. Jain, F. Hamzaoglu, and J. P. Kulkarni, “16.2 edram-cim: compute-in-memory design with reconfigurable embedded-dynamic-memory array realizing adaptive data converters and charge-domain computing,” in IEEE International Solid-State Circuits Conference (ISSCC), 2021.
  9. J.-M. Hung, T.-H. Wen, Y.-H. Huang, S.-P. Huang, F.-C. Chang, C.-I. Su, W.-S. Khwa, C.-C. Lo, R.-S. Liu, C.-C. Hsieh et al., “8-b precision 8-mb reram compute-in-memory macro using direct-current-free time-domain readout scheme for ai edge devices,” IEEE Journal of Solid-State Circuits, 2022.
  10. C. Sakr and N. R. Shanbhag, “Signal processing methods to enhance the energy efficiency of in-memory computing architectures,” IEEE Transactions on Signal Processing, vol. 69, pp. 6462–6472, 2021.
  11. S. Nasrin, A. Shylendra, N. Darabi, T. Tulabandhula, W. Gomes, A. Chakrabarty, and A. R. Trivedi, “Enos: Energy-aware network operator search in deep neural networks,” IEEE Access, vol. 10, pp. 81 447–81 457, 2022.
  12. P. Shukla, S. Nasrin, N. Darabi, W. Gomes, and A. R. Trivedi, “Mc-cim: Compute-in-memory with monte-carlo dropouts for bayesian edge intelligence,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 70, no. 2, pp. 884–896, 2023.
  13. S. Nasrin, D. Badawi, A. E. Cetin, W. Gomes, and A. R. Trivedi, “Mf-net: Compute-in-memory sram for multibit precision inference using memory-immersed data conversion and multiplication-free operators,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 68, no. 5, pp. 1966–1978, 2021.
  14. S. Nasrin, M. B. Hashem, N. Darabi, B. Parpillon, F. Fahim, W. Gomes, and A. R. Trivedi, “Memory-immersed collaborative digitization for area-efficient compute-in-memory deep learning,” 2023.
  15. W. Chen, J. Wilson, S. Tyree, K. Q. Weinberger, and Y. Chen, “Compressing convolutional neural networks in the frequency domain,” in Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, 2016, pp. 1475–1484.
  16. Z. Liu, J. Xu, X. Peng, and R. Xiong, “Frequency-domain dynamic pruning for convolutional neural networks,” Advances in neural information processing systems, vol. 31, 2018.
  17. K. Xu, M. Qin, F. Sun, Y. Wang, Y.-K. Chen, and F. Ren, “Learning in the frequency domain,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 1740–1749.
  18. S. Rossi, S. Marmin, and M. Filippone, “Walsh-hadamard variational inference for bayesian deep learning,” Advances in Neural Information Processing Systems, vol. 33, pp. 9674–9686, 2020.
  19. H. Pan, D. Badawi, and A. E. Cetin, “Fast walsh-hadamard transform and smooth-thresholding based binary layers in deep neural networks,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 4650–4659.
  20. H. Pan, X. Zhu, S. Atici, and A. E. Cetin, “Dct perceptron layer: A transform domain approach for convolution layer,” arXiv preprint arXiv:2211.08577, 2022.
  21. Y. Koizumi, N. Harada, Y. Haneda, Y. Hioka, and K. Kobayashi, “End-to-end sound source enhancement using deep neural network in the modified discrete cosine transform domain,” in 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).   IEEE, 2018, pp. 706–710.
  22. S. Liao, Z. Li, X. Lin, Q. Qiu, Y. Wang, and B. Yuan, “Energy-efficient, high-performance, highly-compressed deep neural network design using block-circulant matrices,” in 2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), 2017, pp. 458–465.
  23. Z.-Q. J. Xu, Y. Zhang, T. Luo, Y. Xiao, and Z. Ma, “Frequency principle: Fourier analysis sheds light on deep neural networks,” arXiv preprint arXiv:1901.06523, 2019.
  24. H. Mohsen, E.-S. A. El-Dahshan, E.-S. M. El-Horbaty, and A.-B. M. Salem, “Classification using deep learning neural networks for brain tumors,” Future Computing and Informatics Journal, vol. 3, no. 1, pp. 68–71, 2018.
  25. J. Xue, J. Li, and Y. Gong, “Restructuring of deep neural network acoustic models with singular value decomposition.” in Interspeech, 2013, pp. 2365–2369.
  26. M. Riera, J. M. Arnau, and A. González, “Dnn pruning with principal component analysis and connection importance estimation,” Journal of Systems Architecture, vol. 122, p. 102336, 2022.
  27. N. Darabi, M. B. Hashem, H. Pan, A. Cetin, W. Gomes, and A. R. Trivedi, “Adc/dac-free analog acceleration of deep neural networks with frequency transformation,” arXiv preprint arXiv:2309.01771, 2023.
  28. N. Darabi, M. B. Hashem, S. Bandyopadhyay, and A. R. Trivedi, “Exploiting programmable dipole interaction in straintronic nanomagnet chains for ising problems,” in 2023 24th International Symposium on Quality Electronic Design (ISQED), 2023, pp. 1–1.
  29. M. B. Hashem, N. Darabi, S. Bandyopadhyay, and A. R. Trivedi, “Solving boolean satisfiability with stochastic nanomagnets,” in 2022 29th IEEE International Conference on Electronics, Circuits and Systems (ICECS), 2022, pp. 1–2.
  30. A. Jayathilake, A. Perera, and M. Chamikara, “Discrete walsh-hadamard transform in signal processing,” IJRIT Int. J. Res. Inf. Technol, vol. 1, pp. 80–89, 2013.
  31. H. Pan, D. Badawi, and A. E. Cetin, “Block walsh-hadamard transform based binary layers in deep neural networks,” ACM Transactions on Embedded Computing Systems (TECS), 2022.
  32. Y. Kong, X. Chen, X. Si, and J. Yang, “Evaluation platform of time-domain computing-in-memory circuits,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 70, no. 3, pp. 1174–1178, 2023.
  33. Predictive technology model (ptm). [Online]. Available: https://ptm.asu.edu/
  34. H. Jiang, W. Li, S. Huang, S. Cosemans, F. Catthoor, and S. Yu, “Analog-to-digital converter design exploration for compute-in-memory accelerators,” IEEE Design & Test, vol. 39, no. 2, pp. 48–55, 2021.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Nastaran Darabi (14 papers)
  2. Amit R. Trivedi (4 papers)