Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Memory-Immersed Collaborative Digitization for Area-Efficient Compute-in-Memory Deep Learning (2307.03863v1)

Published 7 Jul 2023 in cs.AR and cs.LG

Abstract: This work discusses memory-immersed collaborative digitization among compute-in-memory (CiM) arrays to minimize the area overheads of a conventional analog-to-digital converter (ADC) for deep learning inference. Thereby, using the proposed scheme, significantly more CiM arrays can be accommodated within limited footprint designs to improve parallelism and minimize external memory accesses. Under the digitization scheme, CiM arrays exploit their parasitic bit lines to form a within-memory capacitive digital-to-analog converter (DAC) that facilitates area-efficient successive approximation (SA) digitization. CiM arrays collaborate where a proximal array digitizes the analog-domain product-sums when an array computes the scalar product of input and weights. We discuss various networking configurations among CiM arrays where Flash, SA, and their hybrid digitization steps can be efficiently implemented using the proposed memory-immersed scheme. The results are demonstrated using a 65 nm CMOS test chip. Compared to a 40 nm-node 5-bit SAR ADC, our 65 nm design requires $\sim$25$\times$ less area and $\sim$1.4$\times$ less energy by leveraging in-memory computing structures. Compared to a 40 nm-node 5-bit Flash ADC, our design requires $\sim$51$\times$ less area and $\sim$13$\times$ less energy.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. R. Sehgal and J. P. Kulkarni, “Trends in analog and digital intensive compute-in-sram designs,” in IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS), 2021.
  2. S. Yu, H. Jiang, S. Huang, X. Peng, and A. Lu, “Compute-in-memory chips for deep learning: Recent trends and prospects,” IEEE Circuits and Systems Magazine, 2021.
  3. S. Jung, J. Lee, H. Noh, J.-H. Yoon, and J. Kung, “Dualpim: A dual-precision and low-power cnn inference engine using sram-and edram-based processing-in-memory arrays,” in IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS), 2022.
  4. S. Xie, C. Ni, A. Sayal, P. Jain, F. Hamzaoglu, and J. P. Kulkarni, “16.2 edram-cim: compute-in-memory design with reconfigurable embedded-dynamic-memory array realizing adaptive data converters and charge-domain computing,” in IEEE International Solid-State Circuits Conference (ISSCC), 2021.
  5. J.-M. Hung, T.-H. Wen, Y.-H. Huang, S.-P. Huang, F.-C. Chang, C.-I. Su, W.-S. Khwa, C.-C. Lo, R.-S. Liu, C.-C. Hsieh et al., “8-b precision 8-mb reram compute-in-memory macro using direct-current-free time-domain readout scheme for ai edge devices,” IEEE Journal of Solid-State Circuits, 2022.
  6. C. Sakr and N. R. Shanbhag, “Signal processing methods to enhance the energy efficiency of in-memory computing architectures,” IEEE Transactions on Signal Processing, vol. 69, pp. 6462–6472, 2021.
  7. S. Nasrin, D. Badawi, A. E. Cetin, W. Gomes, and A. R. Trivedi, “Mf-net: Compute-in-memory sram for multibit precision inference using memory-immersed data conversion and multiplication-free operators,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 68, no. 5, pp. 1966–1978, 2021.
  8. P. Shukla, S. Nasrin, N. Darabi, W. Gomes, and A. R. Trivedi, “Mc-cim: Compute-in-memory with monte-carlo dropouts for bayesian edge intelligence,” IEEE Transactions on Circuits and Systems I: Regular Papers, 2022.
  9. S. Nasrin, P. Shukla, S. Jaisimha, and A. R. Trivedi, “Compute-in-memory upside down: A learning operator co-design perspective for scalability,” in 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE).   IEEE, 2021, pp. 890–895.
  10. S. Nasrin, S. Ramakrishna, T. Tulabandhula, and A. R. Trivedi, “Supported-binarynet: Bitcell array-based weight supports for dynamic accuracy-energy trade-offs in sram-based binarized neural network,” in 2020 IEEE International Symposium on Circuits and Systems (ISCAS).   IEEE, 2020, pp. 1–5.
  11. C. Yu, T. Yoo, T. T.-H. Kim, K. C. T. Chuan, and B. Kim, “A 16k current-based 8t sram compute-in-memory macro with decoupled read/write and 1-5bit column adc,” in 2020 IEEE Custom Integrated Circuits Conference (CICC).   IEEE, 2020, pp. 1–4.
  12. C. Yu, T. Yoo, K. T. C. Chai, T. T.-H. Kim, and B. Kim, “A 65-nm 8t sram compute-in-memory macro with column adcs for processing neural networks,” IEEE Journal of Solid-State Circuits, vol. 57, no. 11, pp. 3466–3476, 2022.
  13. P. Shukla, A. Shylendra, T. Tulabandhula, and A. R. Trivedi, “Mc 2 ram: Markov chain monte carlo sampling in sram for fast bayesian inference,” in 2020 IEEE International Symposium on Circuits and Systems (ISCAS).   IEEE, 2020, pp. 1–5.
  14. S. R. S. Raman, S. Xie, and J. P. Kulkarni, “Compute-in-edram with backend integrated indium gallium zinc oxide transistors,” in 2021 IEEE International Symposium on Circuits and Systems (ISCAS).   IEEE, 2021, pp. 1–5.
  15. S. Ha, S. Kim, D. Han, S. Um, and H.-J. Yoo, “A 36.2 db high snr and pvt/leakage-robust edram computing-in-memory macro with segmented bl and reference cell array,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 69, no. 5, pp. 2433–2437, 2022.
  16. A. Biswas and A. P. Chandrakasan, “Conv-sram: An energy-efficient sram with in-memory dot-product computation for low-power convolutional neural networks,” IEEE Journal of Solid-State Circuits, 2018.
  17. L. Rahimifard, A. Shylendra, S. Nasrin, S. E. Liu, V. K. Sangwan, M. C. Hersam, and A. R. Trivedi, “Higher order neural processing with input-adaptive dynamic weights on mos2 memtransistor crossbars,” Frontiers in Electronic Materials, vol. 2, 2022.
  18. S. Nasrin, J. L. Drobitch, S. Bandyopadhyay, and A. R. Trivedi, “Low power restricted boltzmann machine using mixed-mode magneto-tunneling junctions,” IEEE Electron Device Letters, vol. 40, no. 2, pp. 345–348, 2019.
  19. H. Jiang, W. Li, S. Huang, S. Cosemans, F. Catthoor, and S. Yu, “Analog-to-digital converter design exploration for compute-in-memory accelerators,” IEEE Design & Test, vol. 39, no. 2, pp. 48–55, 2021.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Shamma Nasrin (5 papers)
  2. Maeesha Binte Hashem (5 papers)
  3. Nastaran Darabi (14 papers)
  4. Benjamin Parpillon (8 papers)
  5. Farah Fahim (28 papers)
  6. Wilfred Gomes (5 papers)
  7. Amit Ranjan Trivedi (27 papers)
Citations (5)