Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Assessing the capacity of a denoising diffusion probabilistic model to reproduce spatial context (2309.10817v1)

Published 19 Sep 2023 in eess.IV, cs.CV, cs.LG, and stat.ML

Abstract: Diffusion models have emerged as a popular family of deep generative models (DGMs). In the literature, it has been claimed that one class of diffusion models -- denoising diffusion probabilistic models (DDPMs) -- demonstrate superior image synthesis performance as compared to generative adversarial networks (GANs). To date, these claims have been evaluated using either ensemble-based methods designed for natural images, or conventional measures of image quality such as structural similarity. However, there remains an important need to understand the extent to which DDPMs can reliably learn medical imaging domain-relevant information, which is referred to as spatial context' in this work. To address this, a systematic assessment of the ability of DDPMs to learn spatial context relevant to medical imaging applications is reported for the first time. A key aspect of the studies is the use of stochastic context models (SCMs) to produce training data. In this way, the ability of the DDPMs to reliably reproduce spatial context can be quantitatively assessed by use of post-hoc image analyses. Error-rates in DDPM-generated ensembles are reported, and compared to those corresponding to a modern GAN. The studies reveal new and important insights regarding the capacity of DDPMs to learn spatial context. Notably, the results demonstrate that DDPMs hold significant capacity for generating contextually correct images that areinterpolated' between training samples, which may benefit data-augmentation tasks in ways that GANs cannot.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (49)
  1. S. Kazeminia, C. Baur, A. Kuijper, B. van Ginneken, N. Navab, S. Albarqouni, and A. Mukhopadhyay, “GANs for medical image analysis,” Artificial Intelligence in Medicine, vol. 109, p. 101938, 2020.
  2. P. Shamsolmoali, M. Zareapoor, E. Granger, H. Zhou, R. Wang, M. E. Celebi, and J. Yang, “Image synthesis with adversarial networks: A comprehensive survey and case studies,” Information Fusion, vol. 72, pp. 126–146, 2021.
  3. A. Kazerouni, E. K. Aghdam, M. Heidari, R. Azad, M. Fayyaz, I. Hacihaliloglu, and D. Merhof, “Diffusion models in medical imaging: A comprehensive survey,” Medical Image Analysis, p. 102846, 2023.
  4. F. Khader, G. Müller-Franzes, S. Tayebi Arasteh, T. Han, C. Haarburger, M. Schulze-Hagen, P. Schad, S. Engelhardt, B. Baeßler, S. Foersch et al., “Denoising diffusion probabilistic models for 3d medical image generation,” Scientific Reports, vol. 13, no. 1, p. 7303, 2023.
  5. Z. Dorjsembe, S. Odonchimed, and F. Xiao, “Three-dimensional medical image synthesis with denoising diffusion probabilistic models,” in Medical Imaging with Deep Learning, 2022.
  6. S. Bond-Taylor, A. Leach, Y. Long, and C. G. Willcocks, “Deep generative modelling: A comparative review of vaes, gans, normalizing flows, energy-based and autoregressive models,” IEEE transactions on pattern analysis and machine intelligence, 2021.
  7. Y. Song and S. Ermon, “Generative modeling by estimating gradients of the data distribution,” Advances in neural information processing systems, vol. 32, 2019.
  8. Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole, “Score-based generative modeling through stochastic differential equations,” arXiv preprint arXiv:2011.13456, 2020.
  9. Y. Song, L. Shen, L. Xing, and S. Ermon, “Solving inverse problems in medical imaging with score-based generative models,” in Int Conf Learn Represent, 2022.
  10. T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila, “Analyzing and improving the image quality of Stylegan,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 8110–8119.
  11. J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli, “Deep unsupervised learning using nonequilibrium thermodynamics,” in International conference on machine learning.   PMLR, 2015, pp. 2256–2265.
  12. W. H. L. Pinaya, P.-D. Tudosiu, J. Dafflon, P. F. da Costa, V. Fernandez, P. Nachev, S. Ourselin, and M. J. Cardoso, “Brain imaging generation with latent diffusion models,” arXiv:2209.07162, 2022.
  13. J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” Advances in neural information processing systems, vol. 33, pp. 6840–6851, 2020.
  14. A. Q. Nichol and P. Dhariwal, “Improved denoising diffusion probabilistic models,” in International Conference on Machine Learning.   PMLR, 2021, pp. 8162–8171.
  15. P. Dhariwal and A. Nichol, “Diffusion models beat GANs on image synthesis,” Advances in neural information processing systems, vol. 34, pp. 8780–8794, 2021.
  16. G. Müller-Franzes, J. M. Niehues, F. Khader, S. T. Arasteh, C. Haarburger, C. Kuhl, T. Wang, T. Han, S. Nebelung, J. N. Kather et al., “Diffusion probabilistic models beat gans on medical images,” arXiv preprint arXiv:2212.07501, 2022.
  17. A. Jalal, M. Arvinte, G. Daras, E. Price, A. G. Dimakis, and J. Tamir, “Robust compressed sensing mri with deep generative priors,” in Adv Neural Inf Process Syst, vol. 34, 2021, pp. 14 938–14 954.
  18. H. Chung and J. C. Ye, “Score-based diffusion models for accelerated mri,” Med Image Anal, vol. 80, p. 102479, 2022.
  19. J. Liu, R. Anirudh, J. J. Thiagarajan, S. He, K. A. Mohan, U. S. Kamilov, and H. Kim, “Dolce: A model-based probabilistic diffusion framework for limited-angle ct reconstruction,” arXiv preprint arXiv:2211.12340, 2022.
  20. P. N. Huy and T. M. Quan, “Denoising diffusion medical models,” arXiv preprint arXiv:2304.09383, 2023.
  21. M. Iskandar, H. Mannering, Z. Sun, J. Matthew, H. Kerdegari, L. Peralta, and M. Xochicale, “Towards realistic ultrasound fetal brain imaging synthesis,” arXiv preprint arXiv:2304.03941, 2023.
  22. M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter, “Gans trained by a two time-scale update rule converge to a local nash equilibrium,” Advances in neural information processing systems, vol. 30, 2017.
  23. T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen, “Improved techniques for training gans,” Advances in neural information processing systems, vol. 29, 2016.
  24. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE transactions on image processing, vol. 13, no. 4, pp. 600–612, 2004.
  25. A. Borji, “Pros and cons of gan evaluation measures: New developments,” Computer Vision and Image Understanding, vol. 215, p. 103329, 2022.
  26. ——, “Pros and cons of gan evaluation measures,” Computer vision and image understanding, vol. 179, pp. 41–65, 2019.
  27. M. U. Akbar, W. Wang, and A. Eklund, “Beware of diffusion models for synthesizing medical images–a comparison with gans in terms of memorizing brain tumor images,” arXiv preprint arXiv:2305.07644, 2023.
  28. M. U. Akbar, M. Larsson, and A. Eklund, “Brain tumor segmentation using synthetic mr images–a comparison of gans and diffusion models,” arXiv preprint arXiv:2306.02986, 2023.
  29. M. J. Chuquicusma, S. Hussein, J. Burt, and U. Bagci, “How to fool radiologists with generative adversarial networks? a visual turing test for lung cancer diagnosis,” in 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018).   IEEE, 2018, pp. 240–244.
  30. H. Y. Park, H.-J. Bae, G.-S. Hong, M. Kim, J. Yun, S. Park, W. J. Chung, and N. Kim, “Realistic high-resolution body computed tomography image synthesis by using progressive growing generative adversarial network: Visual turing test,” JMIR Medical Informatics, vol. 9, no. 3, p. e23328, 2021.
  31. R. Deshpande, M. A. Anastasio, and F. J. Brooks, “A method for evaluating deep generative models of images via assessing the reproduction of high-order spatial context,” arXiv preprint arXiv:2111.12577v2, 2023.
  32. V. A. Kelkar, D. S. Gotsis, F. J. Brooks, K. Prabhat, K. J. Myers, R. Zeng, and M. A. Anastasio, “Assessing the ability of generative adversarial networks to learn canonical medical image statistics,” IEEE transactions on medical imaging, 2023.
  33. A. DuMont Schütte, J. Hetzel, S. Gatidis, T. Hepp, B. Dietz, S. Bauer, and P. Schwab, “Overcoming barriers to data sharing with medical image generation: a comprehensive evaluation,” NPJ digital medicine, vol. 4, no. 1, pp. 1–14, 2021.
  34. A. Oliva and A. Torralba, “The role of context in object recognition,” Trends in cognitive sciences, vol. 11, no. 12, pp. 520–527, 2007.
  35. K. Emrith, M. Chantler, P. Green, L. Maloney, and A. Clarke, “Measuring perceived differences in surface texture due to changes in higher order statistics,” JOSA A, vol. 27, no. 5, pp. 1232–1244, 2010.
  36. C. Doersch, A. Gupta, and A. A. Efros, “Context as supervisory signal: Discovering objects with predictable context,” in Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part III 13.   Springer, 2014, pp. 362–377.
  37. A. Badano, C. G. Graff, A. Badal, D. Sharma, R. Zeng, F. W. Samuelson, S. J. Glick, and K. J. Myers, “Evaluation of digital breast tomosynthesis as replacement of full-field digital mammography using an in silico imaging trial,” JAMA network open, vol. 1, no. 7, pp. e185 474–e185 474, 2018.
  38. R. Deshpande, M. A. Anastasio, and F. J. Brooks, “Stochastic Context Models Designed for the Evaluation of Deep Generative Models of Images,” 2021. [Online]. Available: https://doi.org/10.7910/DVN/HHF4AF
  39. J. Sauvola and M. Pietikäinen, “Adaptive document image binarization,” Pattern recognition, vol. 33, no. 2, pp. 225–236, 2000.
  40. “Deep generative modeling for learning medical image statistics (dgm-image challenge),” https://www.aapm.org/GrandChallenge/DGM-Image/, accessed: 2023-04-15.
  41. L. Liberman and J. H. Menell, “Breast imaging reporting and data system (bi-rads),” Radiologic Clinics, vol. 40, no. 3, pp. 409–430, 2002.
  42. K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
  43. J. Nunez-Iglesias, A. J. Blanch, O. Looker, M. W. Dixon, and L. Tilley, “A new python library to analyse skeleton images confirms malaria parasite remodelling of the red blood cell membrane skeleton,” PeerJ, vol. 6, p. e4312, 2018.
  44. S. Van der Walt, J. L. Schönberger, J. Nunez-Iglesias, F. Boulogne, J. D. Warner, N. Yager, E. Gouillart, and T. Yu, “scikit-image: image processing in python,” PeerJ, vol. 2, p. e453, 2014.
  45. R. M. Haralick, K. Shanmugam, and I. H. Dinstein, “Textural features for image classification,” IEEE Transactions on systems, man, and cybernetics, no. 6, pp. 610–621, 1973.
  46. I. M. Chakravarti, R. G. Laha, and J. Roy, “Handbook of methods of applied statistics,” (No Title), 1967.
  47. M. F. Naeem, S. J. Oh, Y. Uh, Y. Choi, and J. Yoo, “Reliable fidelity and diversity metrics for generative models,” in International Conference on Machine Learning.   PMLR, 2020, pp. 7176–7185.
  48. P. A. Moran, “Notes on continuous stochastic phenomena,” Biometrika, vol. 37, no. 1/2, pp. 17–23, 1950.
  49. Z. Xiao, K. Kreis, and A. Vahdat, “Tackling the generative learning trilemma with denoising diffusion GANs,” arXiv preprint arXiv:2112.07804, 2021.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Rucha Deshpande (7 papers)
  2. Muzaffer Özbey (12 papers)
  3. Hua Li (99 papers)
  4. Mark A. Anastasio (65 papers)
  5. Frank J. Brooks (12 papers)
Citations (5)