Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Information geometric bound on general chemical reaction networks (2309.10334v1)

Published 19 Sep 2023 in physics.chem-ph, cond-mat.stat-mech, cs.IT, math.IT, and stat.ML

Abstract: We investigate the dynamics of chemical reaction networks (CRNs) with the goal of deriving an upper bound on their reaction rates. This task is challenging due to the nonlinear nature and discrete structure inherent in CRNs. To address this, we employ an information geometric approach, using the natural gradient, to develop a nonlinear system that yields an upper bound for CRN dynamics. We validate our approach through numerical simulations, demonstrating faster convergence in a specific class of CRNs. This class is characterized by the number of chemicals, the maximum value of stoichiometric coefficients of the chemical reactions, and the number of reactions. We also compare our method to a conventional approach, showing that the latter cannot provide an upper bound on reaction rates of CRNs. While our study focuses on CRNs, the ubiquity of hypergraphs in fields from natural sciences to engineering suggests that our method may find broader applications, including in information science.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. U. Seifert, Stochastic thermodynamics, fluctuation theorems and molecular machines, Reports on progress in physics 75, 126001 (2012).
  2. N. Shiraishi, An Introduction to Stochastic Thermodynamics: From Basic to Advanced, Vol. 212 (Springer Nature, 2023).
  3. R. Kawai, J. M. R. Parrondo, and C. V. den Broeck, Dissipation: The phase-space perspective, Phys. Rev. Lett. 98, 080602 (2007).
  4. H. Miyahara and K. Aihara, Work relations with measurement and feedback control on nonuniform temperature systems, Phys. Rev. E 98, 042138 (2018).
  5. A. C. Barato and U. Seifert, Thermodynamic uncertainty relation for biomolecular processes, Phys. Rev. Lett. 114, 158101 (2015).
  6. Y. Hasegawa and T. Van Vu, Uncertainty relations in stochastic processes: An information inequality approach, Phys. Rev. E 99, 062126 (2019).
  7. T. Van Vu and Y. Hasegawa, Uncertainty relations for underdamped langevin dynamics, Phys. Rev. E 100, 032130 (2019).
  8. N. Ohga, S. Ito, and A. Kolchinsky, Thermodynamic bound on the asymmetry of cross-correlations, arXiv preprint arXiv:2303.13116  (2023).
  9. T. Van Vu, V. T. Vo, and K. Saito, Dissipation bounds asymmetry of finite-time cross-correlations, arXiv preprint arXiv:2305.18000  (2023).
  10. A. Dechant, J. Garnier-Brun, and S.-i. Sasa, Thermodynamic bounds on correlation times, arXiv preprint arXiv:2303.13038  (2023).
  11. T. J. Kobayashi and Y. Sughiyama, Fluctuation relations of fitness and information in population dynamics, Phys. Rev. Lett. 115, 238102 (2015).
  12. H. Miyahara, Many-body perturbation theory and fluctuation relations for interacting population dynamics, Phys. Rev. E 99, 042415 (2019).
  13. Y. Sughiyama and T. J. Kobayashi, Steady-state thermodynamics for population growth in fluctuating environments, Phys. Rev. E 95, 012131 (2017).
  14. H. Miyahara, Steady-state thermodynamics for population dynamics in fluctuating environments with side information, Journal of Statistical Mechanics: Theory and Experiment 2022, 013501 (2022).
  15. K. Adachi, R. Iritani, and R. Hamazaki, Universal constraint on nonlinear population dynamics, Communications Physics 5, 129 (2022).
  16. T. Okada and A. Mochizuki, Law of localization in chemical reaction networks, Phys. Rev. Lett. 117, 048101 (2016).
  17. Y. Hirono, H. Hong, and J. K. Kim, Robust perfect adaptation of reaction fluxes ensured by network topology, arXiv preprint arXiv:2302.01270  (2023).
  18. S.-i. Amari and H. Nagaoka, Methods of information geometry, Vol. 191 (American Mathematical Soc., 2000).
  19. S.-i. Amari, Information Geometry and Its Applications, Applied Mathematical Sciences (Springer Japan, 2016).
  20. S.-I. Amari, Natural gradient works efficiently in learning, Neural computation 10, 251 (1998).
  21. Y. Wang and W. Li, Accelerated information gradient flow, Journal of Scientific Computing 90, 1 (2022).
  22. S. A. Horiguchi and T. J. Kobayashi, Cellular gradient flow structure linking single-cell-level rules and population-level dynamics, Phys. Rev. Res. 5, L022052 (2023).
  23. J. Karbowski, Bounds on the rates of statistical divergences and mutual information, arXiv preprint arXiv:2308.05597  (2023).
  24. D. A. Beard and H. Qian, Chemical biophysics: quantitative analysis of cellular systems, Vol. 126 (Cambridge University Press Cambridge, 2008).
  25. M. Feinberg, Foundations of chemical reaction network theory (Springer, 2019).
  26. R. Rao and M. Esposito, Nonequilibrium thermodynamics of chemical reaction networks: Wisdom from stochastic thermodynamics, Phys. Rev. X 6, 041064 (2016).
  27. R. Hamming, Numerical methods for scientists and engineers (Courier Corporation, 2012).

Summary

We haven't generated a summary for this paper yet.