Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 53 tok/s
Gemini 2.5 Pro 36 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Gaussian Process Regression models for the properties of micro-tearing modes in spherical tokamak (2309.09785v2)

Published 18 Sep 2023 in physics.plasm-ph

Abstract: Spherical tokamaks (STs) have many desirable features that make them an attractive choice for a future fusion power plant. Power plant viability is intrinsically related to plasma heat and particle confinement and this is often determined by the level of micro-instability driven turbulence. Accurate calculation of the properties of turbulent micro-instabilities is therefore critical for tokamak design, however, the evaluation of these properties is computationally expensive. The considerable number of geometric and thermodynamic parameters and the high resolutions required to accurately resolve these instabilities makes repeated use of direct numerical simulations in integrated modelling workflows extremely computationally challenging and creates the need for fast, accurate, reduced-order models. This paper outlines the development of a data-driven reduced-order model, often termed a {\it surrogate model} for the properties of micro-tearing modes (MTMs) across a spherical tokamak reactor-relevant parameter space utilising Gaussian Process Regression (GPR) and classification; techniques from machine learning. These two components are used in an active learning loop to maximise the efficiency of data acquisition thus minimising computational cost. The high-fidelity gyrokinetic code GS2 is used to calculate the linear properties of the MTMs: the mode growth rate, frequency and normalised electron heat flux; core components of a quasi-linear transport model. Five-fold cross-validation and direct validation on unseen data is used to ascertain the performance of the resulting surrogate models.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube