Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Automated Characterization and Monitoring of Material Shape using Riemannian Geometry (2309.08580v1)

Published 17 Aug 2023 in cs.CE and stat.AP

Abstract: Shape affects both the physical and chemical properties of a material. Characterizing the roughness, convexity, and general geometry of a material can yield information on its catalytic efficiency, solubility, elasticity, porosity, and overall effectiveness in the application of interest. However, material shape can be defined in a multitude of conflicting ways where different aspects of a material's geometry are emphasized over others, leading to bespoke measures of shape that are not easily generalizable. In this paper, we explore the use of Riemannian geometry in the analysis of shape and show that a Riemannian geometric framework for shape analysis is generalizable, computationally scalable, and can be directly integrated into common data analysis methods. In this framework, material shapes are abstracted as points on a Riemannian manifold. This information can be used to construct statistical moments (e.g., means, variances) and perform tasks such as dimensionality reduction and statistical process control. We provide a practical introduction to the mathematics of shape analysis through Riemannian geometry and illustrate its application on a manufactured/mined granular material dataset provided by Covia Corp. We show that the Riemannian framework can be used to automatically extract and quantify the shape of granular materials in a statistically rigorous manner.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.