Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gradient Dynamics in Linear Quadratic Network Games with Time-Varying Connectivity and Population Fluctuation (2309.07871v2)

Published 14 Sep 2023 in cs.GT, cs.SY, eess.SY, and math.DS

Abstract: In this paper, we consider a learning problem among non-cooperative agents interacting in a time-varying system. Specifically, we focus on repeated linear quadratic network games, in which the network of interactions changes with time and agents may not be present at each iteration. To get tractability, we assume that at each iteration, the network of interactions is sampled from an underlying random network model and agents participate at random with a given probability. Under these assumptions, we consider a gradient-based learning algorithm and establish almost sure convergence of the agents' strategies to the Nash equilibrium of the game played over the expected network. Additionally, we prove, in the large population regime, that the learned strategy is an $\epsilon$-Nash equilibrium for each stage game with high probability. We validate our results over an online market application.

Citations (2)

Summary

We haven't generated a summary for this paper yet.