Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Network games with dynamic players: Stabilization and output convergence to Nash equilibrium (1912.00383v1)

Published 1 Dec 2019 in math.OC, cs.SY, and eess.SY

Abstract: This paper addresses a class of network games played by dynamic agents using their outputs. Unlike most existing related works, the Nash equilibrium in this work is defined by functions of agent outputs instead of full agent states, which allows the agents to have more general and heterogeneous dynamics and maintain some privacy of their local states. The concerned network game is formulated with agents modeled by uncertain linear systems subject to external disturbances. The cost function of each agent is a linear quadratic function depending on the outputs of its own and its neighbors in the underlying graph. The main challenge stemming from this game formulation is that merely driving the agent outputs to the Nash equilibrium does not guarantee the stability of the agent dynamics. Using local output and the outputs from the neighbors of each agent, we aim at designing game strategies that achieve output Nash equilibrium seeking and stabilization of the closed-loop dynamics. Particularly, when each agents knows how the actions of its neighbors affect its cost function, a game strategy is developed for network games with digraph topology. When each agent is also allowed to exchange part of its compensator state, a distributed strategy can be designed for networks with connected undirected graphs or connected digraphs.

Citations (17)

Summary

We haven't generated a summary for this paper yet.