Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 102 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 99 tok/s
GPT OSS 120B 472 tok/s Pro
Kimi K2 196 tok/s Pro
2000 character limit reached

Event-by-Event Direction Reconstruction of Solar Neutrinos in a High Light-Yield Liquid Scintillator (2309.06341v2)

Published 12 Sep 2023 in hep-ex and physics.ins-det

Abstract: The direction of individual $8$B solar neutrinos has been reconstructed using the SNO+ liquid scintillator detector. Prompt, directional Cherenkov light was separated from the slower, isotropic scintillation light using time information, and a maximum likelihood method was used to reconstruct the direction of individual scattered electrons. A clear directional signal was observed, correlated with the solar angle. The observation was aided by a period of low primary fluor concentration that resulted in a slower scintillator decay time. This is the first time that event-by-event direction reconstruction in high light-yield liquid scintillator has been demonstrated in a large-scale detector.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. M. Agostini et al. (Borexino Collaboration), Experimental evidence of neutrinos produced in the CNO fusion cycle in the Sun, Nature 587, 577 (2020).
  2. K. Eguchi et al. (KamLAND Collaboration), First results from KamLAND: Evidence for reactor anti-neutrino disappearance, Phys. Rev. Lett. 90, 021802 (2003).
  3. F. P. An et al. (Daya Bay Collaboration), Observation of electron-antineutrino disappearance at Daya Bay, Phys. Rev. Lett. 108, 171803 (2012).
  4. J. K. Ahn et al. (RENO Collaboration), Observation of reactor electron antineutrinos disappearance in the reno experiment, Phys. Rev. Lett. 108, 191802 (2012).
  5. Y. Abe et al. (Double Chooz Collaboration), Reactor electron antineutrino disappearance in the Double Chooz experiment, Phys. Rev. D 86, 052008 (2012).
  6. S. Abe et al. (KamLAND-Zen Collaboration), First search for the majorana nature of neutrinos in the inverted mass ordering region with KamLAND-Zen, Phys. Rev. Lett. 130, 051801 (2023).
  7. G. Alimonti et al. (Borexino Collaboration), The Borexino detector at the Laboratori Nazionali del Gran Sasso, Nucl. Instrum. Methods Phys. Res. Sect. A 600, 568 (2009).
  8. H. Ozaki and A. Takeuchi (KamLAND-Zen Collaboration), Upgrade of the KamLAND-Zen mini-balloon and future prospects, Nucl. Instrum. Methods Phys. Res. Sect. A 958, 162353 (2020).
  9. V. Albanese et al. (SNO+ Collaboration), The SNO+ experiment, J. Instrum. 16, P08059 (2021).
  10. F. An et al. (JUNO Collaboration), Neutrino physics with JUNO, J. Phys. G 43, 030401 (2016).
  11. M. Askins et al. (Theia Collaboration), THEIA: An advanced optical neutrino detector, Eur. Phys. J. C 80, 1 (2020).
  12. J. F. Beacom et al., Physics prospects of the Jinping neutrino experiment, Chin. Phys. C 41, 023002 (2017).
  13. S. D. Biller, Probing Majorana neutrinos in the regime of the normal mass hierarchy, Phys. Rev. D 87, 071301 (2013).
  14. T. Kaptanoglu, M. Luo, and J. Klein, Cherenkov and scintillation light separation using wavelength in LAB based liquid scintillator, J. Instrum. 14, T05001 (2019).
  15. R. Bonventre and G. D. Orebi Gann, Sensitivity of a low threshold directional detector to CNO-cycle solar neutrinos, Eur. Phys. J. C 78, 435 (2018).
  16. J. Dunger, E. J. Leming, and S. D. Biller, Slow-fluor scintillator for low energy solar neutrinos and neutrinoless double beta decay, Phys. Rev. D 105, 092006 (2022).
  17. P. Huber et al., Snowmass Neutrino Frontier Report, arXiv:2211.08641 .
  18. J. R. Klein et al., Future advances in photon-based neutrino detectors: A snowmass white paper, arXiv:2203.07479 .
  19. E. C. for Future Accelerator Detector R&D Roadmap Process Group (CERN), The 2021 ECFA Detector Research and Development Roadmap, 10.17181/CERN.XDPL.W2EX 1 (2021).
  20. T. Anderson et al., Eos: Conceptual design for a demonstrator of hybrid optical detector technology, J. Instrum. 18, P02009 (2023).
  21. ANNIE Collaboration, ANNIE Detector R&D, SNOWMASS Letter of Interest (2021).
  22. R. Svoboda, Status of the 30-ton Purification Demonstrator at Brookhaven, in TAUP 2023 (University of Vienna, 2023).
  23. C. Athanassopoulos et al. (LSND Collaboration), The liquid scintillator neutrino detector and LAMPF neutrino source, Nucl. Instrum. Methods Phys. Res. Sect. A 388, 149 (1997).
  24. M. H. Shaevitz (MiniBooNE Collaboration), Miniboone oscillation results and implications, J. Phys. Conf. Ser 120, 052003 (2008).
  25. A. A. Aguilar-Arevalo et al. (MiniBooNE Collaboration), The MiniBooNE detector, Nucl. Instrum. Methods Phys. Res. Sect. A 599, 28 (2009).
  26. S. D. Biller, E. J. Leming, and J. L. Paton, Slow fluors for effective separation of Cherenkov light in liquid scintillators, Nucl. Instrum. Methods Phys. Res. Sect. A 972, 164106 (2020).
  27. D. Basilico et al. (Borexino Collaboration), Final results of Borexino on CNO solar neutrinos, Phys. Rev. D 108, 102005 (2023).
  28. S. Andringa et al. (SNO+ Collaboration), Current status and future prospects of the SNO+ experiment, Adv. High Energy Phys. , 6194250 (2016).
  29. E. Vitagliano, I. Tamborra, and G. Raffelt, Grand unified neutrino spectrum at earth: Sources and spectral components, Rev. Mod. Phys. 92, 045006 (2020).
Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.