Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantifying Uncertainty in Aggregate Queries over Integrated Datasets (2309.05178v1)

Published 11 Sep 2023 in cs.DB

Abstract: Data integration is a notoriously difficult and heuristic-driven process, especially when ground-truth data are not readily available. This paper presents a measure of uncertainty by providing maximal and minimal ranges of a query outcome in two-table, one-to-many data integration workflows. Users can use these query results to guide a search through different matching parameters, similarity metrics, and constraints. Even though there are exponentially many such matchings, we show that in appropriately constrained circumstances that this result range can be calculated in polynomial time with bipartite graph matching. We evaluate this on real-world datasets and synthetic datasets, and find that uncertainty estimates are more robust when a graph-matching based approach is used for data integration.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Deniz Turkcapar (1 paper)
  2. Sanjay Krishnan (46 papers)