Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Uncertainty in Automated Ontology Matching: Lessons Learned from an Empirical Experimentation (2310.11723v1)

Published 18 Oct 2023 in cs.AI

Abstract: Data integration is considered a classic research field and a pressing need within the information science community. Ontologies play a critical role in such a process by providing well-consolidated support to link and semantically integrate datasets via interoperability. This paper approaches data integration from an application perspective, looking at techniques based on ontology matching. An ontology-based process may only be considered adequate by assuming manual matching of different sources of information. However, since the approach becomes unrealistic once the system scales up, automation of the matching process becomes a compelling need. Therefore, we have conducted experiments on actual data with the support of existing tools for automatic ontology matching from the scientific community. Even considering a relatively simple case study (i.e., the spatio-temporal alignment of global indicators), outcomes clearly show significant uncertainty resulting from errors and inaccuracies along the automated matching process. More concretely, this paper aims to test on real-world data a bottom-up knowledge-building approach, discuss the lessons learned from the experimental results of the case study, and draw conclusions about uncertainty and uncertainty management in an automated ontology matching process. While the most common evaluation metrics clearly demonstrate the unreliability of fully automated matching solutions, properly designed semi-supervised approaches seem to be mature for a more generalized application.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. doi:10.1109/MIS.2006.62.
  2. doi:10.1007/978-3-030-50436-6_35.
  3. doi:10.1007/978-3-642-33618-8_20.
  4. doi:10.1016/j.inffus.2021.01.007.
  5. doi:10.1007/978-3-642-02121-3_16.
  6. doi:10.1017/S0269888903000651.
  7. doi:10.1007/11504894_100.
  8. doi:10.1007/3-540-46439-5_6.
  9. doi:10.3233/SW-160218.
  10. doi:10.1145/1168092.1168097.
  11. doi:10.3390/fi2030238.
  12. doi:10.1145/3211871.
  13. doi:10.1016/j.eswa.2014.08.032.
  14. doi:10.1007/978-3-642-16518-4_1.
  15. doi:10.1109/TKDE.2011.253.
  16. doi:10.1016/j.websem.2020.100592.
  17. doi:10.1007/978-3-540-49612-0.
  18. doi:10.1145/219717.219748.
  19. doi:10.1093/nar/gkh061.
  20. doi:10.1007/978-3-642-25073-6_18.
  21. doi:10.1007/978-3-642-41030-7_38.
  22. doi:10.3233/SW-2011-0028.
  23. doi:10.1080/00029890.1962.11989827.
  24. doi:10.1137/0105003.
  25. doi:10.1007/978-3-642-40683-6_4.
  26. doi:10.1007/3-540-36560-5_17.
  27. doi:10.1109/ICDE.2002.994702.
  28. doi:10.1007/978-3-540-30475-3_48.
  29. doi:https://doi.org/10.1016/j.procs.2017.05.003. URL http://www.sciencedirect.com/science/article/pii/S187705091730491X
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Inès Osman (2 papers)
  2. Salvatore F. Pileggi (3 papers)
  3. Sadok Ben Yahia (19 papers)