Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Symplectic Structure-Aware Hamiltonian (Graph) Embeddings (2309.04885v4)

Published 9 Sep 2023 in cs.LG and math.SG

Abstract: In traditional Graph Neural Networks (GNNs), the assumption of a fixed embedding manifold often limits their adaptability to diverse graph geometries. Recently, Hamiltonian system-inspired GNNs have been proposed to address the dynamic nature of such embeddings by incorporating physical laws into node feature updates. We present Symplectic Structure-Aware Hamiltonian GNN (SAH-GNN), a novel approach that generalizes Hamiltonian dynamics for more flexible node feature updates. Unlike existing Hamiltonian approaches, SAH-GNN employs Riemannian optimization on the symplectic Stiefel manifold to adaptively learn the underlying symplectic structure, circumventing the limitations of existing Hamiltonian GNNs that rely on a pre-defined form of standard symplectic structure. This innovation allows SAH-GNN to automatically adapt to various graph datasets without extensive hyperparameter tuning. Moreover, it conserves energy during training meaning the implicit Hamiltonian system is physically meaningful. Finally, we empirically validate SAH-GNN's superiority and adaptability in node classification tasks across multiple types of graph datasets.

Summary

We haven't generated a summary for this paper yet.