Papers
Topics
Authors
Recent
Search
2000 character limit reached

Node Embedding from Hamiltonian Information Propagation in Graph Neural Networks

Published 2 Mar 2023 in cs.LG | (2303.01030v1)

Abstract: Graph neural networks (GNNs) have achieved success in various inference tasks on graph-structured data. However, common challenges faced by many GNNs in the literature include the problem of graph node embedding under various geometries and the over-smoothing problem. To address these issues, we propose a novel graph information propagation strategy called Hamiltonian Dynamic GNN (HDG) that uses a Hamiltonian mechanics approach to learn node embeddings in a graph. The Hamiltonian energy function in HDG is learnable and can adapt to the underlying geometry of any given graph dataset. We demonstrate the ability of HDG to automatically learn the underlying geometry of graph datasets, even those with complex and mixed geometries, through comprehensive evaluations against state-of-the-art baselines on various downstream tasks. We also verify that HDG is stable against small perturbations and can mitigate the over-smoothing problem when stacking many layers.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.