Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Bayesian and frequentist investigation of prior effects in EFTofLSS analyses of full-shape BOSS and eBOSS data (2309.04468v1)

Published 8 Sep 2023 in astro-ph.CO and hep-ph

Abstract: Previous studies based on Bayesian methods have shown that the constraints on cosmological parameters from the Baryonic Oscillation Spectroscopic Survey (BOSS) full-shape data using the Effective Field Theory of Large Scale Structure (EFTofLSS) depend on the choice of prior on the EFT nuisance parameters. In this work, we explore this prior dependence by adopting a frequentist approach based on the profile likelihood method, which is inherently independent of priors, considering data from BOSS, eBOSS and Planck. We find that the priors on the EFT parameters in the Bayesian inference are informative and that prior volume effects are important. This is reflected in shifts of the posterior mean compared to the maximum likelihood estimate by up to 1.0 {\sigma} (1.6 {\sigma}) and in a widening of intervals informed from frequentist compared to Bayesian intervals by factors of up to 1.9 (1.6) for BOSS (eBOSS) in the baseline configuration, while the constraints from Planck are unchanged. Our frequentist confidence intervals give no indication of a tension between BOSS/eBOSS and Planck. However, we find that the profile likelihood prefers extreme values of the EFT parameters, highlighting the importance of combining Bayesian and frequentist approaches for a fully nuanced cosmological inference. We show that the improved statistical power of future data will reconcile the constraints from frequentist and Bayesian inference using the EFTofLSS.

Citations (19)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.