Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

ECoDe: A Sample-Efficient Method for Co-Design of Robotic Agents (2309.04085v2)

Published 8 Sep 2023 in cs.RO and cs.LG

Abstract: Co-designing autonomous robotic agents involves simultaneously optimizing the controller and physical design of the agent. Its inherent bi-level optimization formulation necessitates an outer loop design optimization driven by an inner loop control optimization. This can be challenging when the design space is large and each design evaluation involves a data-intensive reinforcement learning process for control optimization. To improve the sample efficiency of co-design, we propose a multi-fidelity-based exploration strategy in which we tie the controllers learned across the design spaces through a universal policy learner for warm-starting subsequent controller learning problems. Experiments performed on a wide range of agent design problems demonstrate the superiority of our method compared to baselines. Additionally, analysis of the optimized designs shows interesting design alterations, including design simplifications and non-intuitive alterations.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.