More solutions for the Wheeler-DeWitt equation in a flat FLRW minisuperspace (2309.02955v2)
Abstract: This work proposes more solutions for the Wheeler-DeWitt equation in a flat FLRW minisuperspace. We study quantum cosmology in the framework of the de Broglie-Bohm interpretation and investigate the quantum cosmological effects throughout the evolution of the universe. In a particular solution, the tendency for a scalar field to roll down the potential is balanced by the quantum force, and a Minkowski spacetime is obtained.
- E. W. Kolb and M. S. Turner, “The Early Universe,” Front. Phys. 69, 1-547 (1990) doi:10.1201/9780429492860
- A. D. Linde, “Particle physics and inflationary cosmology,” Contemp. Concepts Phys. 5, 1-362 (1990) [arXiv:hep-th/0503203 [hep-th]].
- J. J. Halliwell, “INTRODUCTORY LECTURES ON QUANTUM COSMOLOGY,” [arXiv:0909.2566 [gr-qc]].
- D. L. Wiltshire, “An Introduction to quantum cosmology,” [arXiv:gr-qc/0101003 [gr-qc]].
- T. P. Shestakova, “On the meaning of the wave function of the Universe,” Int. J. Mod. Phys. D 28, no.13, 1941009 (2019) doi:10.1142/S0218271819410098 [arXiv:1909.05588 [gr-qc]].
- D. H. Coule and J. Martin, “Quantum cosmology and open universes,” Phys. Rev. D 61, 063501 (2000) doi:10.1103/PhysRevD.61.063501 [arXiv:gr-qc/9905056 [gr-qc]].
- A. D. Linde, “Creation of a compact topologically nontrivial inflationary universe,” JCAP 10, 004 (2004) doi:10.1088/1475-7516/2004/10/004 [arXiv:hep-th/0408164 [hep-th]].
- C. M. Lin, “Just some simple (but nontrivial) analytical solutions for de Broglie-Bohm quantum cosmology,” [arXiv:2301.06088 [gr-qc]].
- S. W. Hawking and D. N. Page, “Operator Ordering and the Flatness of the Universe,” Nucl. Phys. B 264, 185-196 (1986) doi:10.1016/0550-3213(86)90478-5
- A. Vilenkin, “Boundary Conditions in Quantum Cosmology,” Phys. Rev. D 33, 3560 (1986) doi:10.1103/PhysRevD.33.3560
- D. Bohm, “A Suggested interpretation of the quantum theory in terms of hidden variables. 1.,” Phys. Rev. 85, 166-179 (1952) doi:10.1103/PhysRev.85.166
- D. Bohm, “A Suggested interpretation of the quantum theory in terms of hidden variables. 2.,” Phys. Rev. 85, 180-193 (1952) doi:10.1103/PhysRev.85.180
- D. Bohm, B. J. Hiley and P. N. Kaloyerou, “An Ontological Basis for the Quantum Theory. 1. Nonrelativistic Particle Systems. 2. A Causal Interpretation of Quantum Fields,” Phys. Rept. 144, 323-375 (1987) doi:10.1016/0370-1573(87)90024-X
- J. S. Bell, “SPEAKABLE AND UNSPEAKABLE IN QUANTUM MECHANICS. COLLECTED PAPERS ON QUANTUM PHILOSOPHY,”
- J. S. Bell, “On the Impossible Pilot Wave,” Found. Phys. 12, 989-999 (1982) doi:10.1007/BF01889272
- J. C. Vink, “Quantum potential interpretation of the wave function of the universe,” Nucl. Phys. B 369, 707-728 (1992) doi:10.1016/0550-3213(92)90283-H
- N. Pinto-Neto, “The Bohm interpretation of quantum cosmology,” Found. Phys. 35, 577-603 (2005) doi:10.1007/s10701-004-2012-8 [arXiv:gr-qc/0410117 [gr-qc]].
- N. Pinto-Neto and J. C. Fabris, “Quantum cosmology from the de Broglie-Bohm perspective,” Class. Quant. Grav. 30, 143001 (2013) doi:10.1088/0264-9381/30/14/143001 [arXiv:1306.0820 [gr-qc]].
- S. Goldstein and S. Teufel, “Quantum space-time without observers: Ontological clarity and the conceptual foundations of quantum gravity,” [arXiv:quant-ph/9902018 [quant-ph]].
- C. M. Lin, “Uniform rate inflation,” JCAP 04, 037 (2023) doi:10.1088/1475-7516/2023/04/037 [arXiv:2303.04999 [hep-ph]].
- A. Vilenkin, “The Interpretation of the Wave Function of the Universe,” Phys. Rev. D 39, 1116 (1989) doi:10.1103/PhysRevD.39.1116
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.