Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Individual and Multistakeholder Fairness in Tourism Recommender Systems (2309.02052v1)

Published 5 Sep 2023 in cs.IR and cs.HC

Abstract: This position paper summarizes our published review on individual and multistakeholder fairness in Tourism Recommender Systems (TRS). Recently, there has been growing attention to fairness considerations in recommender systems (RS). It has been acknowledged in research that fairness in RS is often closely tied to the presence of multiple stakeholders, such as end users, item providers, and platforms, as it raises concerns for the fair treatment of all parties involved. Hence, fairness in RS is a multi-faceted concept that requires consideration of the perspectives and needs of the different stakeholders to ensure fair outcomes for them. However, there may often be instances where achieving the goals of one stakeholder could conflict with those of another, resulting in trade-offs. In this paper, we emphasized addressing the unique challenges of ensuring fairness in RS within the tourism domain. We aimed to discuss potential strategies for mitigating the aforementioned challenges and examine the applicability of solutions from other domains to tackle fairness issues in tourism. By exploring cross-domain approaches and strategies for incorporating S-Fairness, we can uncover valuable insights and determine how these solutions can be adapted and implemented effectively in the context of tourism to enhance fairness in RS.

Citations (11)

Summary

We haven't generated a summary for this paper yet.