Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 32 tok/s
GPT-5 High 27 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 461 tok/s Pro
Kimi K2 227 tok/s Pro
2000 character limit reached

Circuit-theoretic phenomenological model of an electrostatic gate-controlled bi-SQUID (2309.01094v4)

Published 3 Sep 2023 in cond-mat.mes-hall

Abstract: A numerical model based on a lumped circuit element approximation for a bi-superconducting quantum interference device (bi-SQUID) operating in the presence of an external magnetic field is presented in this paper. Included in the model is the novel ability to capture the resultant behaviour of the device when a strong electric field is applied to its Josephson junctions by utilising gate electrodes. The model is used to simulate an all-metallic SNS (Al-Cu-Al) bi-SQUID, where good agreement is observed between the simulated results and the experimental data. The results discussed in this work suggest that the primary consequences of the superconducting field effect induced by the gating of the Josephson junctions are accounted for in our minimal model; namely, the suppression of the junctions super-current. Although based on a simplified semi-empirical model, our results may guide the search for a microscopic origin of this effect by providing a means to model the voltage response of gated SQUIDs. Also, the possible applications of this effect regarding the operation of SQUIDs as ultra-high precision sensors, where the performance of such devices can be improved via careful tuning of the applied gate voltages, are discussed at the end of the paper.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. V. K. Kornev, I. I. Soloviev, N. V. Klenov, and O. A. Mukhanov, “Bi-SQUID: a novel linearization method for DC SQUID voltage response,” Superconductor Science and Technology 22, 114011 (2009a).
  2. O. Mukhanov, G. Prokopenko, and R. Romanofsky, “Quantum sensitivity: Superconducting quantum interference filter-based microwave receivers,” Microwave Magazine, IEEE 15, 57–65 (2014).
  3. S. A. E. Berggren, Computational and Mathematical Modeling of Coupled Superconducting Quantum Interference Devices, Ph.D. thesis, The Claremont Graduate University (2012).
  4. P. Longhini, S. Berggren, A. Leese de Escobar, A. Palacios, S. Rice, B. Taylor, V. In, O. A. Mukhanov, G. Prokopenko, M. Nisenoff, E. Wong, and M. C. De Andrade, “Voltage response of non-uniform arrays of bi-superconductive quantum interference devices,” Journal of Applied Physics 111, 093920 (2012).
  5. G. C. Tettamanzi, I. Nakone, F. Giazotto, and P. Atanackovic, “A quantum magnetic field receiving device,” Australian Provisional Patent Application 2021903616 (2021).
  6. M. Tinkham, Introduction to Superconductivity, 2nd ed. (Dover Publications, 2004).
  7. B. Jeanneret and S. Benz, “Application of the Josephson effect in electrical metrology,” The European Physical Journal Special Topics 172, 181–206 (2009).
  8. D. Winkler, “Superconducting analogue electronics for research and industry,” Superconductor Science and Technology 16, 1583–1590 (2003).
  9. J. Lenz, “A review of magnetic sensors,” Proceedings of the IEEE 78, 973–989 (1990).
  10. D. Robbes, “Highly sensitive magnetometers—a review,” Sensors and Actuators A: Physical 129, 86–93 (2006), eMSA 2004.
  11. J. Oppenlaender, C. Haeussler, A. Friesch, J. Tomes, P. Caputo, T. Traeuble, and N. Schopohl, “Superconducting quantum interference filters operated in commercial miniature cryocoolers,” IEEE Transactions on Applied Superconductivity 15, 936–939 (2005).
  12. J. Oppenländer, C. Häussler, and N. Schopohl, “Non-ΦΦ\Phiroman_Φ0-periodic macroscopic quantum interference in one-dimensional parallel Josephson junction arrays with unconventional grating structure,” Phys. Rev. B 63, 024511 (2000), arXiv:cond-mat/0003487 [cond-mat.supr-con] .
  13. E. E. Mitchell, K. E. Hannam, J. Lazar, K. E. Leslie, C. J. Lewis, A. Grancea, S. T. Keenan, S. K. H. Lam, and C. P. Foley, “2D SQIF arrays using 20000 YBCO high Rn Josephson junctions,” Superconductor Science and Technology 29, 06LT01 (2016).
  14. V. K. Kornev, A. V. Sharafiev, I. I. Soloviev, N. V. Kolotinskiy, and O. A. Mukhanov, “A guide to active antennas based on superconducting quantum arrays,” IEEE Transactions on Applied Superconductivity 26, 1–4 (2016).
  15. V. K. Kornev, I. I. Soloviev, N. V. Klenov, and O. A. Mukhanov, “High linearity SQIF-like Josephson-junction structures,” IEEE Transactions on Applied Superconductivity 19, 741–744 (2009b).
  16. G. De Simoni and F. Giazotto, “Ultralinear magnetic-flux-to-voltage conversion in superconducting quantum interference proximity transistors,” Phys. Rev. Applied 19, 054021 (2023).
  17. G. De Simoni, N. Ligato, F. Giazotto, L. Cassola, and G. C. Tettamanzi, “Ultrahigh linearity of the magnetic-flux-to-voltage response of proximity-based mesoscopic bi-SQUIDs,” Phys. Rev. Applied 18, 014073 (2022).
  18. G. De Simoni, F. Paolucci, C. Puglia, and F. Giazotto, “Josephson field-effect transistors based on all-metallic Al/Cu/Al proximity nanojunctions,” ACS Nano 13, 7871–7876 (2019).
  19. G. De Simoni, F. Paolucci, P. Solinas, E. Strambini, and F. Giazotto, “Metallic supercurrent field-effect transistor,” Nature Nanotechnology 13, 802–805 (2018).
  20. G. De Simoni, S. Battisti, N. Ligato, M. T. Mercaldo, M. Cuoco, and F. Giazotto, “Gate control of the current–flux relation of a Josephson quantum interferometer based on proximitized metallic nanojuntions,” ACS Applied Electronic Materials 3, 3927–3935 (2021).
  21. M. Rocci, G. De Simoni, C. Puglia, D. D. Esposti, E. Strambini, V. Zannier, L. Sorba, and F. Giazotto, “Gate-controlled suspended titanium nanobridge supercurrent transistor,” ACS Nano 14, 12621–12628 (2020).
  22. F. Paolucci, F. Crisá, G. De Simoni, L. Bours, C. Puglia, E. Strambini, S. Roddaro, and F. Giazotto, “Electrostatic field-driven supercurrent suppression in ionic-gated metallic superconducting nanotransistors,” Nano Letters 21, 10309–10314 (2021).
  23. S. Sankar, J. S. Meyer, and M. Houzet, “Josephson effect in superconductor/normal-dot/superconductor junctions driven out of equilibrium by quasiparticle injection,” Phys. Rev. B 105, 134515 (2022).
  24. J. Basset, O. Stanisavljević, M. Kuzmanović, J. Gabelli, C. H. L. Quay, J. Estève, and M. Aprili, “Gate-assisted phase fluctuations in all-metallic Josephson junctions,” Phys. Rev. Research 3, 043169 (2021).
  25. A. Amoretti, D. K. Brattan, N. Magnoli, L. Martinoia, I. Matthaiakakis, and P. Solinas, “Destroying superconductivity in thin films with an electric field,” Physical Review Research  (2022).
  26. D. Z. Haxell, M. Coraiola, M. Hinderling, S. C. Kate, D. Sabonis, A. E. Svetogorov, W. Belzig, E. Cheah, F. Krizek, R. Schott, W. Wegscheider, and F. Nichele, “Demonstration of the Nonlocal Josephson Effect in Andreev Molecules,” Nano Letters 23, 7532–7538 (2023).
  27. B. Chesca, R. Kleiner, and D. Koelle, “SQUID theory,” in The SQUID Handbook, edited by J. Clarke and A. I. Braginski (John Wiley & Sons, Ltd, 2004) Chap. 2, pp. 29–92.
  28. C. J. Fourie, O. Wetzstein, T. Ortlepp, and J. Kunert, “Three-dimensional multi-terminal superconductive integrated circuit inductance extraction,” Superconductor Science and Technology 24, 125015 (2011).
  29. K.-H. Müller and E. E. Mitchell, “Theoretical model for parallel squid arrays with fluxoid focusing,” Phys. Rev. B 103, 054509 (2021).
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com