Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

General and Practical Tuning Method for Off-the-Shelf Graph-Based Index: SISAP Indexing Challenge Report by Team UTokyo (2309.00472v1)

Published 1 Sep 2023 in cs.IR, cs.CV, and cs.DB

Abstract: Despite the efficacy of graph-based algorithms for Approximate Nearest Neighbor (ANN) searches, the optimal tuning of such systems remains unclear. This study introduces a method to tune the performance of off-the-shelf graph-based indexes, focusing on the dimension of vectors, database size, and entry points of graph traversal. We utilize a black-box optimization algorithm to perform integrated tuning to meet the required levels of recall and Queries Per Second (QPS). We applied our approach to Task A of the SISAP 2023 Indexing Challenge and got second place in the 10M and 30M tracks. It improves performance substantially compared to brute force methods. This research offers a universally applicable tuning method for graph-based indexes, extending beyond the specific conditions of the competition to broader uses.

Citations (2)

Summary

We haven't generated a summary for this paper yet.