Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Relative NN-Descent: A Fast Index Construction for Graph-Based Approximate Nearest Neighbor Search (2310.20419v1)

Published 31 Oct 2023 in cs.IR

Abstract: Approximate Nearest Neighbor Search (ANNS) is the task of finding the database vector that is closest to a given query vector. Graph-based ANNS is the family of methods with the best balance of accuracy and speed for million-scale datasets. However, graph-based methods have the disadvantage of long index construction time. Recently, many researchers have improved the tradeoff between accuracy and speed during a search. However, there is little research on accelerating index construction. We propose a fast graph construction algorithm, Relative NN-Descent (RNN-Descent). RNN-Descent combines NN-Descent, an algorithm for constructing approximate K-nearest neighbor graphs (K-NN graphs), and RNG Strategy, an algorithm for selecting edges effective for search. This algorithm allows the direct construction of graph-based indexes without ANNS. Experimental results demonstrated that the proposed method had the fastest index construction speed, while its search performance is comparable to existing state-of-the-art methods such as NSG. For example, in experiments on the GIST1M dataset, the construction of the proposed method is 2x faster than NSG. Additionally, it was even faster than the construction speed of NN-Descent.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Naoki Ono (1 paper)
  2. Yusuke Matsui (35 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.