Black-hole spectroscopy: quasinormal modes, ringdown stability and the pseudospectrum (2308.16227v4)
Abstract: Black-hole spectroscopy is a powerful tool to probe the Kerr nature of astrophysical compact objects and their environment. The observation of multiple ringdown modes in gravitational waveforms could soon lead to high-precision gravitational-wave spectroscopy, thus it is critical to understand if the quasinormal mode spectrum itself is affected by astrophysical environments, quantum corrections, and other generic modifications. In this chapter, we will review the black-hole spectroscopy program and its challenges regarding quasinormal mode detection, the overtone status and the recent evidence that supports the existence of nonlinearities in the spectrum of black holes. We will then discuss a newly introduced non-modal tool in black-hole physics, namely the pseudospectrum; a mathematical notion that can shed light on the spectral stability of quasinormal modes, and discuss its novel applications in black holes and exotic horizonless compact objects. We will show that quasinormal modes generically suffer from spectral instabilities, explore how such phenomena can further affect black-hole spectroscopy, and discuss potential ringdown imprints and waveform stability issues in current and future gravitational-wave detectors.
- L. Barack et al., Black holes, gravitational waves and fundamental physics: a roadmap, Class. Quant. Grav. 36, 143001 (2019), arXiv:1806.05195 [gr-qc] .
- R. Abbott et al. (LIGO Scientific, Virgo), GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run, Phys. Rev. X 11, 021053 (2021a), arXiv:2010.14527 [gr-qc] .
- P. Amaro-Seoane et al. (LISA), Laser Interferometer Space Antenna, (2017), arXiv:1702.00786 [astro-ph.IM] .
- P. Amaro-Seoane et al., Astrophysics with the Laser Interferometer Space Antenna, (2022), arXiv:2203.06016 [gr-qc] .
- W.-R. Hu and Y.-L. Wu, The Taiji Program in Space for gravitational wave physics and the nature of gravity, Natl. Sci. Rev. 4, 685 (2017).
- J. Luo et al. (TianQin), TianQin: a space-borne gravitational wave detector, Class. Quant. Grav. 33, 035010 (2016), arXiv:1512.02076 [astro-ph.IM] .
- Y. Gong, J. Luo, and B. Wang, Concepts and status of Chinese space gravitational wave detection projects, Nature Astron. 5, 881 (2021), arXiv:2109.07442 [astro-ph.IM] .
- K. G. Arun et al. (LISA), New horizons for fundamental physics with LISA, Living Rev. Rel. 25, 4 (2022), arXiv:2205.01597 [gr-qc] .
- E. Barausse, V. Cardoso, and P. Pani, Can environmental effects spoil precision gravitational-wave astrophysics?, Phys. Rev. D 89, 104059 (2014), arXiv:1404.7149 [gr-qc] .
- N. Yunes and X. Siemens, Gravitational-Wave Tests of General Relativity with Ground-Based Detectors and Pulsar Timing-Arrays, Living Rev. Rel. 16, 9 (2013), arXiv:1304.3473 [gr-qc] .
- B. Carter, Axisymmetric black hole has only two degrees of freedom, Phys. Rev. Lett. 26, 331 (1971).
- L. Lehner, Numerical relativity: A Review, Class. Quant. Grav. 18, R25 (2001), arXiv:gr-qc/0106072 .
- L. Barack and A. Pound, Self-force and radiation reaction in general relativity, Rept. Prog. Phys. 82, 016904 (2019), arXiv:1805.10385 [gr-qc] .
- K. Destounis, A. G. Suvorov, and K. D. Kokkotas, Testing spacetime symmetry through gravitational waves from extreme-mass-ratio inspirals, Phys. Rev. D 102, 064041 (2020a), arXiv:2009.00028 [gr-qc] .
- K. Destounis, A. G. Suvorov, and K. D. Kokkotas, Gravitational-wave glitches in chaotic extreme-mass-ratio inspirals, Phys. Rev. Lett. 126, 141102 (2021a), arXiv:2103.05643 [gr-qc] .
- K. Destounis and K. D. Kokkotas, Gravitational-wave glitches: Resonant islands and frequency jumps in nonintegrable extreme-mass-ratio inspirals, Phys. Rev. D 104, 064023 (2021), arXiv:2108.02782 [gr-qc] .
- K. Destounis, G. Huez, and K. D. Kokkotas, Geodesics and gravitational waves in chaotic extreme-mass-ratio inspirals: The curious case of Zipoy-Voorhees black-hole mimickers, (2023a), arXiv:2301.11483 [gr-qc] .
- K. D. Kokkotas and B. G. Schmidt, Quasinormal modes of stars and black holes, Living Rev. Rel. 2, 2 (1999), arXiv:gr-qc/9909058 .
- E. Berti, V. Cardoso, and A. O. Starinets, Quasinormal modes of black holes and black branes, Class. Quant. Grav. 26, 163001 (2009), arXiv:0905.2975 [gr-qc] .
- R. A. Konoplya and A. Zhidenko, Quasinormal modes of black holes: From astrophysics to string theory, Rev. Mod. Phys. 83, 793 (2011), arXiv:1102.4014 [gr-qc] .
- E. Berti, V. Cardoso, and C. M. Will, On gravitational-wave spectroscopy of massive black holes with the space interferometer LISA, Phys. Rev. D 73, 064030 (2006), arXiv:gr-qc/0512160 .
- M. Isi and W. M. Farr, Analyzing black-hole ringdowns, (2021), arXiv:2107.05609 [gr-qc] .
- N. Franchini and S. H. Völkel, Testing General Relativity with Black Hole Quasi-Normal Modes, (2023a), arXiv:2305.01696 [gr-qc] .
- V. Cardoso and P. Pani, Testing the nature of dark compact objects: a status report, Living Rev. Rel. 22, 4 (2019a), arXiv:1904.05363 [gr-qc] .
- J. L. Blázquez-Salcedo, F. S. Khoo, and J. Kunz, Quasinormal modes of Einstein-Gauss-Bonnet-dilaton black holes, Phys. Rev. D 96, 064008 (2017), arXiv:1706.03262 [gr-qc] .
- K. Destounis, G. Panotopoulos, and A. Rincón, Stability under scalar perturbations and quasinormal modes of 4D Einstein–Born–Infeld dilaton spacetime: exact spectrum, Eur. Phys. J. C 78, 139 (2018), arXiv:1801.08955 [gr-qc] .
- F. Moulin, A. Barrau, and K. Martineau, An overview of quasinormal modes in modified and extended gravity, Universe 5, 202 (2019), arXiv:1908.06311 [gr-qc] .
- L. Pierini and L. Gualtieri, Quasi-normal modes of rotating black holes in Einstein-dilaton Gauss-Bonnet gravity: the first order in rotation, Phys. Rev. D 103, 124017 (2021), arXiv:2103.09870 [gr-qc] .
- C. Vlachos, E. Papantonopoulos, and K. Destounis, Echoes of Compact Objects in Scalar-Tensor Theories of Gravity, Phys. Rev. D 103, 044042 (2021), arXiv:2101.12196 [gr-qc] .
- R. Ghosh, S. Sk, and S. Sarkar, Hairy black holes: Nonexistence of short hairs and a bound on the light ring size, Phys. Rev. D 108, L041501 (2023a), arXiv:2306.14193 [gr-qc] .
- H.-P. Nollert, About the significance of quasinormal modes of black holes, Phys. Rev. D 53, 4397 (1996), arXiv:gr-qc/9602032 .
- H.-P. Nollert and R. H. Price, Quantifying excitations of quasinormal mode systems, J. Math. Phys. 40, 980 (1999), arXiv:gr-qc/9810074 .
- J. L. Jaramillo, R. Panosso Macedo, and L. Al Sheikh, Pseudospectrum and Black Hole Quasinormal Mode Instability, Phys. Rev. X 11, 031003 (2021), arXiv:2004.06434 [gr-qc] .
- J. L. Jaramillo, R. Panosso Macedo, and L. A. Sheikh, Gravitational Wave Signatures of Black Hole Quasinormal Mode Instability, Phys. Rev. Lett. 128, 211102 (2022), arXiv:2105.03451 [gr-qc] .
- J. L. Jaramillo, Pseudospectrum and binary black hole merger transients, Class. Quant. Grav. 39, 217002 (2022), arXiv:2206.08025 [gr-qc] .
- M. Isi and W. M. Farr, Revisiting the ringdown of GW150914, (2022), arXiv:2202.02941 [gr-qc] .
- M. H.-Y. Cheung et al., Nonlinear effects in black hole ringdown, (2022b), arXiv:2208.07374 [gr-qc] .
- K. Mitman et al., Nonlinearities in black hole ringdowns, (2022), arXiv:2208.07380 [gr-qc] .
- P. J. Nee, S. H. Völkel, and H. P. Pfeiffer, Role of black hole quasinormal mode overtones for ringdown analysis, Phys. Rev. D 108, 044032 (2023), arXiv:2302.06634 [gr-qc] .
- R. A. Konoplya and A. Zhidenko, First few overtones probe the event horizon geometry, (2022), arXiv:2209.00679 [gr-qc] .
- A. Courty, K. Destounis, and P. Pani, Quasinormal mode (in)stability and strong cosmic censorship, (2023), in preparation.
- L. Trefethen and M. Embree, Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators (2005).
- T. Regge and J. A. Wheeler, Stability of a Schwarzschild singularity, Phys. Rev. 108, 1063 (1957).
- F. J. Zerilli, Effective potential for even parity Regge-Wheeler gravitational perturbation equations, Phys. Rev. Lett. 24, 737 (1970).
- S. A. Teukolsky and W. H. Press, Perturbations of a rotating black hole. III. Interaction of the hole with gravitational and electromagnetic radiation., Astrophys. J. 193, 443 (1974).
- S. Chandrasekhar, The mathematical theory of black holes (1985).
- C. V. Vishveshwara, Scattering of Gravitational Radiation by a Schwarzschild Black-hole, Nature 227, 936 (1970).
- S. Chandrasekhar and S. L. Detweiler, The quasi-normal modes of the Schwarzschild black hole, Proc. Roy. Soc. Lond. A 344, 441 (1975).
- E. W. Leaver, Spectral decomposition of the perturbation response of the Schwarzschild geometry, Phys. Rev. D 34, 384 (1986a).
- P. Pani, Advanced Methods in Black-Hole Perturbation Theory, Int. J. Mod. Phys. A 28, 1340018 (2013), arXiv:1305.6759 [gr-qc] .
- C. Gundlach, R. H. Price, and J. Pullin, Late time behavior of stellar collapse and explosions: 1. Linearized perturbations, Phys. Rev. D 49, 883 (1994a), arXiv:gr-qc/9307009 .
- B. P. Abbott et al. (LIGO Scientific, Virgo), Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett. 116, 061102 (2016), arXiv:1602.03837 [gr-qc] .
- E. Finch and C. J. Moore, Searching for a ringdown overtone in GW150914, Phys. Rev. D 106, 043005 (2022), arXiv:2205.07809 [gr-qc] .
- A. Kehagias and A. Riotto, On Nonlinear Black Hole Ringdowns from Gauge-Invariance and Measurements, (2023), arXiv:2302.01240 [gr-qc] .
- E. W. Leaver, Spectral decomposition of the perturbation response of the Schwarzschild geometry, Phys. Rev. D 34, 384 (1986b).
- M. Casals and A. C. Ottewill, Analytic Investigation of the Branch Cut of the Green Function in Schwarzschild Space-time, Phys. Rev. D 87, 064010 (2013), arXiv:1210.0519 [gr-qc] .
- K. D. Kokkotas and B. F. Schutz, W-modes: A New family of normal modes of pulsating relativistic stars, Mon. Not. Roy. Astron. Soc. 255, 119 (1992).
- R. G. Daghigh, M. D. Green, and J. C. Morey, Significance of Black Hole Quasinormal Modes: A Closer Look, Phys. Rev. D 101, 104009 (2020), arXiv:2002.07251 [gr-qc] .
- L. N. Trefethen, Spectral Methods in Matlab (Society for Industrial and Applied Mathematics, Philadelphia, PA, 2000).
- E. Gasperin and J. L. Jaramillo, Energy scales and black hole pseudospectra: the structural role of the scalar product, Class. Quant. Grav. 39, 115010 (2022), arXiv:2107.12865 [gr-qc] .
- T. A. Driscoll and L. N. Trefethen, Pseudospectra for the wave equation with an absorbing boundary, Journal of Computational and Applied Mathematics 69, 125 (1996).
- L. Al Sheikh, Scattering resonances and Pseudospectrum : stability and completeness aspects in optical and gravitational systems, Theses, Université Bourgogne Franche-Comté (2022).
- S. A. Orszag and L. C. Kells, Transition to turbulence in plane poiseuille and plane couette flow, Journal of Fluid Mechanics 96, 159 (1980).
- V. C. Patel and M. R. Head, Some observations on skin friction and velocity profiles in fully developed pipe and channel flows, Journal of Fluid Mechanics 38, 181 (1969).
- D. R. Carlson, S. E. Widnall, and M. F. Peeters, A flow-visualization study of transition in plane poiseuille flow, Journal of Fluid Mechanics 121, 487 (1982).
- S. Sarkar, M. Rahman, and S. Chakraborty, Perturbing the perturbed: Stability of quasi-normal modes in presence of a positive cosmological constant, (2023), arXiv:2304.06829 [gr-qc] .
- D. Arean, D. Garcia-Fariña, and K. Landsteiner, Pseudospectra of Holographic Quasinormal Modes, (2023), arXiv:2307.08751 [hep-th] .
- M. Kimura, Note on the parametrized black hole quasinormal ringdown formalism, Phys. Rev. D 101, 064031 (2020), arXiv:2001.09613 [gr-qc] .
- S. H. Völkel, N. Franchini, and E. Barausse, Theory-agnostic reconstruction of potential and couplings from quasinormal modes, Phys. Rev. D 105, 084046 (2022a), arXiv:2202.08655 [gr-qc] .
- N. Franchini and S. H. Völkel, Parametrized quasinormal mode framework for non-Schwarzschild metrics, Phys. Rev. D 107, 124063 (2023b), arXiv:2210.14020 [gr-qc] .
- M. Ansorg and R. Panosso Macedo, Spectral decomposition of black-hole perturbations on hyperboloidal slices, Phys. Rev. D 93, 124016 (2016), arXiv:1604.02261 [gr-qc] .
- R. Panosso Macedo, J. L. Jaramillo, and M. Ansorg, Hyperboloidal slicing approach to quasi-normal mode expansions: the Reissner-Nordström case, Phys. Rev. D 98, 124005 (2018), arXiv:1809.02837 [gr-qc] .
- R. Panosso Macedo, Hyperboloidal framework for the Kerr spacetime, Class. Quant. Grav. 37, 065019 (2020a).
- A. Zenginoglu, Hyperboloidal foliations and scri-fixing, Class. Quant. Grav. 25, 145002 (2008), arXiv:0712.4333 [gr-qc] .
- A. Zenginoglu, A Geometric framework for black hole perturbations, Phys. Rev. D83, 127502 (2011), arXiv:1102.2451 [gr-qc] .
- K. Destounis, R. D. B. Fontana, and F. C. Mena, Accelerating black holes: quasinormal modes and late-time tails, Phys. Rev. D 102, 044005 (2020b), arXiv:2005.03028 [gr-qc] .
- V. Ferrari and B. Mashhoon, New approach to the quasinormal modes of a black hole, Phys. Rev. D 30, 295 (1984).
- H. R. Beyer, On the completeness of the quasinormal modes of the Poschl-Teller potential, Commun. Math. Phys. 204, 397 (1999), arXiv:gr-qc/9803034 .
- P. Bizoń, T. Chmaj, and P. Mach, A toy model of hyperboloidal approach to quasinormal modes, Acta Phys. Polon. B 51, 1007 (2020), arXiv:2002.01770 [gr-qc] .
- R. H. Price, Nonspherical perturbations of relativistic gravitational collapse. 1. Scalar and gravitational perturbations, Phys. Rev. D 5, 2419 (1972a).
- R. H. Price, Nonspherical Perturbations of Relativistic Gravitational Collapse. II. Integer-Spin, Zero-Rest-Mass Fields, Phys. Rev. D 5, 2439 (1972b).
- C. Gundlach, R. H. Price, and J. Pullin, Late time behavior of stellar collapse and explosions: 2. Nonlinear evolution, Phys. Rev. D 49, 890 (1994b), arXiv:gr-qc/9307010 .
- S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-Time, Cambridge Monographs on Mathematical Physics (Cambridge University Press, 2023).
- Y.-W. Kim, Y. S. Myung, and Y.-J. Park, Quasinormal modes and hidden conformal symmetry in the Reissner-Nordström black hole, Eur. Phys. J. C 73, 2440 (2013), arXiv:1205.3701 [hep-th] .
- M. Richartz, Quasinormal modes of extremal black holes, Phys. Rev. D 93, 064062 (2016), arXiv:1509.04260 [gr-qc] .
- K. Destounis, Charged Fermions and Strong Cosmic Censorship, Phys. Lett. B 795, 211 (2019a), arXiv:1811.10629 [gr-qc] .
- S. Aretakis, Stability and Instability of Extreme Reissner-Nordström Black Hole Spacetimes for Linear Scalar Perturbations I, Commun. Math. Phys. 307, 17 (2011a), arXiv:1110.2007 [gr-qc] .
- S. Aretakis, Stability and Instability of Extreme Reissner-Nordström Black Hole Spacetimes for Linear Scalar Perturbations II, Annales Henri Poincare 12, 1491 (2011b), arXiv:1110.2009 [gr-qc] .
- Y. Angelopoulos, S. Aretakis, and D. Gajic, Horizon hair of extremal black holes and measurements at null infinity, Phys. Rev. Lett. 121, 131102 (2018), arXiv:1809.10037 [gr-qc] .
- T. Okamura, On scattering off the extreme Reissner-Nordström black hole in N=2 supergravity, Phys. Rev. D 56, 4927 (1997), arXiv:gr-qc/9703050 .
- R. Kallosh, J. Rahmfeld, and W. K. Wong, One loop supergravity corrections to the black hole entropy and residual supersymmetry, Phys. Rev. D 57, 1063 (1998), arXiv:hep-th/9706048 .
- E. Berti, Black hole quasinormal modes: Hints of quantum gravity?, Conf. Proc. C 0405132, 145 (2004), arXiv:gr-qc/0411025 .
- V. Moncrief, Odd-parity stability of a Reissner-Nordström black hole, Phys. Rev. D 9, 2707 (1974a).
- V. Moncrief, Stability of Reissner-Nordström black holes, Phys. Rev. D 10, 1057 (1974b).
- V. Moncrief, Gauge-invariant perturbations of Reissner-Nordström black holes, Phys. Rev. D 12, 1526 (1975).
- S. L. Liebling and C. Palenzuela, Dynamical boson stars, Living Rev. Rel. 26, 1 (2023), arXiv:1202.5809 [gr-qc] .
- P. O. Mazur and E. Mottola, Gravitational Condensate Stars: An Alternative to Black Holes, Universe 9, 88 (2023), arXiv:gr-qc/0109035 .
- R. Carballo-Rubio, Stellar equilibrium in semiclassical gravity, Phys. Rev. Lett. 120, 061102 (2018), arXiv:1706.05379 [gr-qc] .
- D. E. Kaplan and S. Rajendran, Firewalls in General Relativity, Phys. Rev. D 99, 044033 (2019), arXiv:1812.00536 [hep-th] .
- S. D. Mathur, The Fuzzball proposal for black holes: An Elementary review, Fortsch. Phys. 53, 793 (2005), arXiv:hep-th/0502050 .
- S. D. Mathur, Fuzzballs and the information paradox: A Summary and conjectures, (2008), arXiv:0810.4525 [hep-th] .
- V. Cardoso and P. Pani, Testing the nature of dark compact objects: a status report, Living Rev. Rel. 22, 4 (2019b), arXiv:1904.05363 [gr-qc] .
- J. Keir, Slowly decaying waves on spherically symmetric spacetimes and ultracompact neutron stars, Class. Quant. Grav. 33, 135009 (2016), arXiv:1404.7036 [gr-qc] .
- Z. Zhong, V. Cardoso, and E. Maggio, On the instability of ultracompact horizonless spacetimes, (2022), arXiv:2211.16526 [gr-qc] .
- V. Vellucci, E. Franzin, and S. Liberati, Echoes from backreacting exotic compact objects, (2022), arXiv:2205.14170 [gr-qc] .
- Z. Jackiewicz and R. Renaut, A note on stability of pseudospectral methods for wave propagation, Journal of Computational and Applied Mathematics 143, 127 (2002).
- V. Cardoso and L. Gualtieri, Testing the black hole ‘no-hair’ hypothesis, Class. Quant. Grav. 33, 174001 (2016), arXiv:1607.03133 [gr-qc] .
- V. Cardoso and P. Pani, Tests for the existence of black holes through gravitational wave echoes, Nature Astron. 1, 586 (2017), arXiv:1709.01525 [gr-qc] .
- S. R. Dolan, Instability of the massive Klein-Gordon field on the Kerr spacetime, Phys. Rev. D 76, 084001 (2007), arXiv:0705.2880 [gr-qc] .
- J. G. Rosa and S. R. Dolan, Massive vector fields on the Schwarzschild spacetime: quasi-normal modes and bound states, Phys. Rev. D 85, 044043 (2012), arXiv:1110.4494 [hep-th] .
- K. Destounis, Superradiant instability of charged scalar fields in higher-dimensional Reissner-Nordström-de Sitter black holes, Phys. Rev. D 100, 044054 (2019b), arXiv:1908.06117 [gr-qc] .
- H. S. Vieira and K. D. Kokkotas, Quasibound states of Schwarzschild acoustic black holes, Phys. Rev. D 104, 024035 (2021), arXiv:2104.03938 [gr-qc] .
- H. S. Vieira, K. Destounis, and K. D. Kokkotas, Analog Schwarzschild black holes of Bose-Einstein condensates in a cavity: Quasinormal modes and quasibound states, Phys. Rev. D 107, 104038 (2023), arXiv:2301.11480 [gr-qc] .
- C. T. Cunningham, R. H. Price, and V. Moncrief, Radiation from collapsing relativistic stars. III - Second order perturbations of collapse with rotation, ApJ 236, 674 (1980).
- J. Miller, B. Wardell, and A. Pound, Second-order perturbation theory: the problem of infinite mode coupling, Phys. Rev. D 94, 104018 (2016), arXiv:1608.06783 [gr-qc] .
- K. Akiyama et al. (Event Horizon Telescope), First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole, Astrophys. J. Lett. 875, L1 (2019), arXiv:1906.11238 [astro-ph.GA] .
- K. Akiyama et al. (Event Horizon Telescope), First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way, Astrophys. J. Lett. 930, L12 (2022).
- D. Lynden-Bell, Galactic nuclei as collapsed old quasars, Nature 223, 690 (1969).
- V. G. Gurzadian and L. M. Ozernoi, Accretion on massive black holes in galactic nuclei, Nature 280, 214 (1979).
- P. J. Armitage, Theory of disk accretion onto supermassive black holes, Astrophys. Space Sci. Libr. 308, 89 (2004), arXiv:astro-ph/0405170 .
- A. J. Dittmann and M. C. Miller, Star formation in accretion discs and SMBH growth, Mon. Not. Roy. Astron. Soc. 493, 3732 (2020), arXiv:1911.08685 [astro-ph.HE] .
- R. Catena and P. Ullio, A novel determination of the local dark matter density, JCAP 08, 004, arXiv:0907.0018 [astro-ph.CO] .
- M. Weber and W. de Boer, Determination of the local dark matter density in our galaxy, Astronomy and Astrophysics 509, A25 (2010).
- E. Pazos-Ávalos and C. O. Lousto, Numerical integration of the teukolsky equation in the time domain, Physical Review D 72, 10.1103/physrevd.72.084022 (2005).
- A. Zenginoglu and G. Khanna, Null infinity waveforms from extreme-mass-ratio inspirals in Kerr spacetime, Phys. Rev. X 1, 021017 (2011), arXiv:1108.1816 [gr-qc] .
- R. Panosso Macedo, Hyperboloidal framework for the Kerr spacetime, Class. Quant. Grav. 37, 065019 (2020b), arXiv:1910.13452 [gr-qc] .
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.