Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quasioptimal alternating projections and their use in low-rank approximation of matrices and tensors (2308.16097v2)

Published 30 Aug 2023 in math.OC, cs.NA, and math.NA

Abstract: We study the convergence of specific inexact alternating projections for two non-convex sets in a Euclidean space. The $\sigma$-quasioptimal metric projection ($\sigma \geq 1$) of a point $x$ onto a set $A$ consists of points in $A$ the distance to which is at most $\sigma$ times larger than the minimal distance $\mathrm{dist}(x,A)$. We prove that quasioptimal alternating projections, when one or both projections are quasioptimal, converge locally and linearly for super-regular sets with transversal intersection. The theory is motivated by the successful application of alternating projections to low-rank matrix and tensor approximation. We focus on two problems -- nonnegative low-rank approximation and low-rank approximation in the maximum norm -- and develop fast alternating-projection algorithms for matrices and tensor trains based on cross approximation and acceleration techniques. The numerical experiments confirm that the proposed methods are efficient and suggest that they can be used to regularise various low-rank computational routines.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (112)
  1. S. Adly, F. Nacry and L. Thibault “Preservation of prox-regularity of sets with applications to constrained optimization” In SIAM J. Optim. 26.1 SIAM, 2016, pp. 448–473
  2. S. Agmon “The relaxation method for linear inequalities” In Can. J. Math. 6 Cambridge University Press, 1954, pp. 382–392
  3. “Alternating projections on nontangential manifolds” In Constr. Approx. 38.3 Springer, 2013, pp. 489–525
  4. F.J. Aragón Artacho, R. Campoy and M.K. Tam “The Douglas–Rachford algorithm for convex and nonconvex feasibility problems” In Math. Methods Oper. Res. 91 Springer, 2020, pp. 201–240
  5. “Convex Analysis and Monotone Operator Theory in Hilbert Spaces” New York: Springer, 2011
  6. H.H. Bauschke, P.L. Combettes and D.R. Luke “Phase retrieval, error reduction algorithm, and Fienup variants: a view from convex optimization” In J. Opt. Soc. Am. A 19.7 Optica Publishing Group, 2002, pp. 1334–1345
  7. “Reflection-projection method for convex feasibility problems with an obtuse cone” In J. Optim. Theory Appl. 120.3 Springer, 2004, pp. 503–531
  8. “Restricted normal cones and the method of alternating projections: theory” In Set-Valued Var. Anal. 21.3 Springer, 2013, pp. 431–473
  9. “Real rank versus nonnegative rank” In Linear Algebra Appl. 431.12 Elsevier, 2009, pp. 2330–2335
  10. “Optimal CUR matrix decompositions” In Proceedings of the 46th annual ACM symposium on Theory of computing, 2014, pp. 353–362
  11. L.M. Bregman “The method of successive projections for finding a common point of convex sets” In Soviet Math. Dokl. 6, 1965, pp. 688–692
  12. “Tensor train completion: Local recovery guarantees via Riemannian optimization” In Numer. Linear Algebra Appl., 2023, pp. e2520
  13. “Proximity maps for convex sets” In Proc. Am. Math. Soc. 10.3, 1959, pp. 448–450
  14. “Algorithms for ℓpsubscriptℓ𝑝\ell_{p}roman_ℓ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT low-rank approximation” In International Conference on Machine Learning, 2017, pp. 806–814
  15. “On the low-rank approximation of data on the unit sphere” In SIAM J. Matrix Anal. Appl. 27.1 SIAM, 2005, pp. 46–60
  16. M.T. Chu, R.E. Funderlic and R.J. Plemmons “Structured low rank approximation” In Linear Algebra Appl. 366 Elsevier, 2003, pp. 157–172
  17. “Nonnegative matrix and tensor factorizations: Applications to exploratory multi-way data analysis and blind source separation” Chichester: John Wiley & Sons, 2009
  18. “On selecting a maximum volume sub-matrix of a matrix and related problems” In Theor. Comput. Sci. 410.47-49 Elsevier, 2009, pp. 4801–4811
  19. “Low-rank approximation in the Frobenius norm by column and row subset selection” In SIAM J. Matrix Anal. Appl. 41.4 SIAM, 2020, pp. 1651–1673
  20. “Deep composition of Tensor-Trains using squared inverse Rosenblatt transports” In Found. Comput. Math. 22.6 Springer, 2022, pp. 1863–1922
  21. “1-bit matrix completion” In Inf. Inference: J. IMA 3.3 OUP, 2014, pp. 189–223
  22. L. De Lathauwer, B. De Moor and J. Vandewalle “A multilinear singular value decomposition” In SIAM J. Matrix Anal. Appl. 21.4 SIAM, 2000, pp. 1253–1278
  23. L. De Lathauwer, B. De Moor and J. Vandewalle “On the best rank-1 and rank-(r1subscript𝑟1r_{1}italic_r start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT, r2subscript𝑟2r_{2}italic_r start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, …, rnsubscript𝑟𝑛r_{n}italic_r start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT) approximation of higher-order tensors” In SIAM J. Matrix Anal. Appl. 21.4 SIAM, 2000, pp. 1324–1342
  24. J.W. Demmel “Applied Numerical Linear Algebra” Philadelphia: SIAM, 1997
  25. “Matrix approximation and projective clustering via volume sampling” In Theory Comput. 2.1 Theory of Computing Exchange, 2006, pp. 225–247
  26. “Approximation and sampling of multivariate probability distributions in the tensor train decomposition” In Stat. Comput. 30 Springer, 2020, pp. 603–625
  27. “Parallel cross interpolation for high-precision calculation of high-dimensional integrals” In Comput. Phys. Commun. 246 Elsevier, 2020, pp. 106869
  28. S.V. Dolgov, B.N. Khoromskij and I.V. Oseledets “Fast solution of parabolic problems in the tensor train/quantized tensor train format with initial application to the Fokker–Planck equation” In SIAM J. Sci. Comput. 34.6 SIAM, 2012, pp. A3016–A3038
  29. “The singular value decomposition: Anatomy of optimizing an algorithm for extreme scale” In SIAM Rev. 60.4 SIAM, 2018, pp. 808–865
  30. D. Drusvyatskiy, A.D. Ioffe and A.S. Lewis “Alternating projections and coupling slope”, 2014 arXiv:1401.7569
  31. D. Drusvyatskiy, A.D. Ioffe and A.S. Lewis “Transversality and alternating projections for nonconvex sets” In Found. Comput. Math. 15.6 Springer, 2015, pp. 1637–1651
  32. “Local linear convergence for inexact alternating projections on nonconvex sets” In Vietnam J. Math. 47 Springer, 2019, pp. 669–681
  33. “Alternating projection methods” Philadelphia: SIAM, 2011
  34. “Nonnegative matrix factorization for signal and data analytics: Identifiability, algorithms, and applications.” In IEEE Signal Process. Mag. 36.2, 2019, pp. 59–80
  35. “A survey of quantization methods for efficient neural network inference” In Low-Power Computer Vision, 2022, pp. 291–326
  36. N. Gillis “Nonnegative matrix factorization” Philadelphia: SIAM, 2020
  37. “Partial identifiability for nonnegative matrix factorization” In SIAM J. Matrix Anal. Appl. 44.1 SIAM, 2023, pp. 27–52
  38. “Low-rank matrix approximation in the infinity norm” In Linear Algebra Appl. 581 Elsevier, 2019, pp. 367–382
  39. “The maximal-volume concept in approximation by low-rank matrices” In Structured Matrices in Mathematics, Computer Science, and Engineering, I Providence: AMS, 2001, pp. 47–51
  40. S.A. Goreinov, E.E. Tyrtyshnikov and N.L. Zamarashkin “A theory of pseudoskeleton approximations” In Linear Algebra Appl. 261.1-3 Elsevier, 1997, pp. 1–21
  41. “How to find a good submatrix” In Matrix Methods: Theory, Algorithms And Applications: Dedicated to the Memory of Gene Golub Singapore: World Scientific, 2010, pp. 247–256
  42. “The phase rank of a matrix”, 2021 arXiv:2111.01962
  43. “Efficient rank reduction of correlation matrices” In Linear Algebra Appl. 422.2-3 Elsevier, 2007, pp. 629–653
  44. “On optimal low-rank approximation of non-negative matrices” In 2015 54th IEEE Conference on Decision and Control (CDC), 2015, pp. 5278–5283
  45. C. Grussler, A. Rantzer and P. Giselsson “Low-rank optimization with convex constraints” In IEEE Trans. Autom. Control 63.11 IEEE, 2018, pp. 4000–4007
  46. M. Gu “Subspace iteration randomization and singular value problems” In SIAM J. Sci. Comput. 37.3 SIAM, 2015, pp. A1139–A1173
  47. “Efficient algorithms for computing a strong rank-revealing QR factorization” In SIAM J. Sci. Comput. 17.4 SIAM, 1996, pp. 848–869
  48. N. Halko, P.-G. Martinsson and J.A. Tropp “Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions” In SIAM Rev. 53.2 SIAM, 2011, pp. 217–288
  49. “Perspectives on CUR decompositions” In Appl. Comput. Harmon. Anal. 48.3 Elsevier, 2020, pp. 1088–1099
  50. “Perturbations of CUR decompositions” In SIAM J. Matrix Anal. Appl. 42.1 SIAM, 2021, pp. 351–375
  51. “Nonconvex notions of regularity and convergence of fundamental algorithms for feasibility problems” In SIAM J. Optim. 23.4 SIAM, 2013, pp. 2397–2419
  52. R. Hesse, D.R. Luke and P. Neumann “Alternating projections and Douglas-Rachford for sparse affine feasibility” In IEEE Trans. Signal Process. 62.18 IEEE, 2014, pp. 4868–4881
  53. N.J. Higham “Accuracy and Stability of Numerical Algorithms” Philadelphia: SIAM, 2002
  54. N.J. Higham “Computing the nearest correlation matrix—a problem from finance” In IMA J. Numer. Anal. 22.3 OUP, 2002, pp. 329–343
  55. S. Holtz, T. Rohwedder and R. Schneider “On manifolds of tensors of fixed TT-rank” In Numer. Math. 120.4 Springer, 2012, pp. 701–731
  56. P. Hrubeš “On the nonnegative rank of distance matrices” In Inf. Process. Lett. 112.11 Elsevier, 2012, pp. 457–461
  57. “Quantized precoding for massive MU-MIMO” In IEEE Trans. Commun. 65.11 IEEE, 2017, pp. 4670–4684
  58. T. Jiang “Maxima of entries of Haar distributed matrices” In Probab. Theory Relat. Fields 131 Springer, 2005, pp. 121–144
  59. “Nonnegative low rank tensor approximations with multidimensional image applications” In Numer. Math. 153.1 Springer, 2023, pp. 141–170
  60. “Direct solution of the chemical master equation using quantized tensor trains” In PLoS Comput. Biol. 10.3 Public Library of Science San Francisco, USA, 2014, pp. e1003359
  61. Tamara G Kolda and Brett W Bader “Tensor decompositions and applications” In SIAM Rev. 51.3 SIAM, 2009, pp. 455–500
  62. A.Y. Kruger, D.R. Luke and N.H. Thao “Set regularities and feasibility problems” In Math. Program. 168 Springer, 2018, pp. 279–311
  63. “Regularity of collections of sets and convergence of inexact alternating projections”, 2015 arXiv:1501.04191
  64. A. Kyrillidis “Simple and practical algorithms for ℓpsubscriptℓ𝑝\ell_{p}roman_ℓ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT-norm low-rank approximation”, 2018 arXiv:2108.12163
  65. J.M. Lee “Introduction to Smooth Manifolds”, Graduate Texts in Mathematics New York: Springer, 2003
  66. A. Lewis, D.R. Luke and J. Malick “Local linear convergence of alternating and averaged nonconvex projections” In Found. Comput. Math. 9.4, 2009, pp. 485–513
  67. “Alternating projections on manifolds” In Math. Oper. Res. 33.1 INFORMS, 2008, pp. 216–234
  68. D.R. Luke “Prox-regularity of rank constraint sets and implications for algorithms” In J. Math. Imaging Vis. 47 Springer, 2013, pp. 231–238
  69. “Nonnegative tensor-train low-rank approximations of the Smoluchowski coagulation equation” In International Conference on Large-Scale Scientific Computing, 2021, pp. 342–350
  70. “Sketching for a low-rank nonnegative matrix approximation: Numerical study” In Russ. J. Numer. Anal. Math. Model. 38.2 De Gruyter, 2023, pp. 99–114
  71. “Tensor train versus Monte Carlo for the multicomponent Smoluchowski coagulation equation” In J. Comput. Phys. 316 Elsevier, 2016, pp. 164–179
  72. “Rectangular maximum-volume submatrices and their applications” In Linear Algebra Appl. 538 Elsevier, 2018, pp. 187–211
  73. B.S. Mordukhovich “Variational Analysis and Generalized Differentiation I: Basic Theory” Berlin: Springer, 2006
  74. Stanislav Morozov, Matvey Smirnov and Nikolai Zamarashkin “On the optimal rank-1 approximation of matrices in the Chebyshev norm” In Linear Algebra Appl. 679 Elsevier, 2023, pp. 4–29
  75. “The relaxation method for linear inequalities” In Can. J. Math. 6 Cambridge University Press, 1954, pp. 393–404
  76. “On distributed averaging algorithms and quantization effects” In IEEE Trans. Autom. Control 54.11 IEEE, 2009, pp. 2506–2517
  77. “On local convergence of the method of alternating projections” In Found. Comput. Math. 16 Springer, 2016, pp. 425–455
  78. G.S. Novikov, M.E. Panov and I.V. Oseledets “Tensor-train density estimation” In Uncertainty in artificial intelligence, 2021, pp. 1321–1331
  79. “TT-cross approximation for multidimensional arrays” In Linear Algebra Appl. 432.1 Elsevier, 2010, pp. 70–88
  80. I.V. Oseledets “Tensor-train decomposition” In SIAM J. Sci. Comput. 33.5 SIAM, 2011, pp. 2295–2317
  81. “Breaking the curse of dimensionality, or how to use SVD in many dimensions” In SIAM J. Sci. Comput. 31.5 SIAM, 2009, pp. 3744–3759
  82. A. Osinsky “Rectangular maximum volume and projective volume search algorithms”, 2018 arXiv:1809.02334
  83. A.I. Osinsky “Tensor trains approximation estimates in the Chebyshev norm” In Comput. Math. Math. Phys. 59.2 Springer, 2019, pp. 201–206
  84. “Pseudo-skeleton approximations with better accuracy estimates” In Linear Algebra Appl. 537 Elsevier, 2018, pp. 221–249
  85. H.M. Phan “Linear convergence of the Douglas–Rachford method for two closed sets” In Optimization 65.2 Taylor & Francis, 2016, pp. 369–385
  86. “Prox-regular functions in variational analysis” In Trans. Am. Math. Soc. 348.5, 1996, pp. 1805–1838
  87. R. Poliquin, R. Rockafellar and L. Thibault “Local differentiability of distance functions” In Trans. Am. Math. Soc. 352.11, 2000, pp. 5231–5249
  88. M.A. Rami, U. Helmke and J.B. Moore “A finite steps algorithm for solving convex feasibility problems” In J. Glob. Optim. 38 Springer, 2007, pp. 143–160
  89. “Variational Analysis” Berlin: Springer, 2009
  90. “Rank bounds for approximating Gaussian densities in the tensor-train format” In SIAM/ASA J. Uncertain. Quantif. 10.3 SIAM, 2022, pp. 1191–1224
  91. D.V. Savostyanov “Quasioptimality of maximum-volume cross interpolation of tensors” In Linear Algebra Appl. 458 Elsevier, 2014, pp. 217–244
  92. Ulrich Schollwöck “The density-matrix renormalization group in the age of matrix product states” In Ann. Phys. 326.1 Elsevier, 2011, pp. 96–192
  93. “Fast Nonnegative Tensor Factorizations with Tensor Train Model” In Lobachevskii J. Math. 43.4 Springer, 2022, pp. 882–894
  94. Y. Shitov “Euclidean distance matrices and separations in communication complexity theory” In Discrete Comput. Geom. 61 Springer, 2019, pp. 653–660
  95. G. Song, M.K. Ng and T.-X. Jiang “Tangent space based alternating projections for nonnegative low rank matrix approximation” In IEEE Trans. Knowl. Data Eng. IEEE, 2022, pp. 1–18
  96. “Nonnegative low rank matrix approximation for nonnegative matrices” In Appl. Math. Lett. 105 Elsevier, 2020, pp. 106300
  97. Z. Song, D.P. Woodruff and P. Zhong “Low rank approximation with entrywise ℓ1subscriptℓ1\ell_{1}roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT-norm error” In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, 2017, pp. 688–701
  98. M. Steinlechner “Riemannian optimization for high-dimensional tensor completion” In SIAM J. Sci. Comput. 38.5 SIAM, 2016, pp. S461–S484
  99. G.W. Stewart “Four algorithms for the the efficient computation of truncated pivoted QR approximations to a sparse matrix” In Numer. Math. 83 Springer, 1999, pp. 313–323
  100. “A randomized Kaczmarz algorithm with exponential convergence” In J. Fourier Anal. Appl. 15.2 Springer, 2009, pp. 262
  101. A. Sultonov, S. Matveev and S. Budzinskiy “Low-rank nonnegative tensor approximation via alternating projections and sketching” In Comput. Appl. Math. 42.2 Springer, 2023, pp. 68
  102. “Numerical Linear Algebra” Philadelphia: SIAM, 1997
  103. “Designing structured tight frames via an alternating projection method” In IEEE Trans. Inf. Theory 51.1 IEEE, 2005, pp. 188–209
  104. “Why are big data matrices approximately low rank?” In SIAM J. Math. Data Sci. 1.1 SIAM, 2019, pp. 144–160
  105. B. Vandereycken “Low-rank matrix completion by Riemannian optimization” In SIAM J. Optim. 23.2 SIAM, 2013, pp. 1214–1236
  106. B. Vanluyten, J.C. Willems and B. De Moor “Nonnegative matrix factorization without nonnegativity constraints on the factors” In Submitted for publication, 2008
  107. J. von Neumann “Functional Operators, Volume 2” Princeton: Princeton University Press, 1950
  108. N.L. Zamarashkin, S.V. Morozov and E.E. Tyrtyshnikov “On the Best Approximation Algorithm by Low-Rank Matrices in Chebyshev’s Norm” In Comput. Math. Math. Phys. 62.5 Springer, 2022, pp. 701–718
  109. “On the existence of a nearly optimal skeleton approximation of a matrix in the Frobenius norm” In Dokl. Math. 97, 2018, pp. 164–166
  110. “On the accuracy of cross and column low-rank Maxvol approximations in average” In Comput. Math. Math. Phys. 61.5 Springer, 2021, pp. 786–798
  111. “Rank-one approximation to high order tensors” In SIAM J. Matrix Anal. Appl. 23.2 SIAM, 2001, pp. 534–550
  112. “Optimal low-rank approximation to a correlation matrix” In Linear Algebra Appl. 364 Elsevier, 2003, pp. 161–187
Citations (5)

Summary

We haven't generated a summary for this paper yet.