Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On dual groups of symmetric varieties and distinguished representations of $p$-adic groups (2308.15800v3)

Published 30 Aug 2023 in math.RT and math.NT

Abstract: Let $X=H\backslash G$ be a symmetric variety over a $p$-adic field. Assume $G$ is split. Let $\widehat{G}$ be the Langlands dual group of $G$. There is a complex group $\widehat{G}_X$ whose root datum is naturally constructed from that of $\widehat{G}$. In this paper, we construct a homomorphism $\widehat{\varphi}_X:\widehat{G}_X\times\operatorname{SL}_2(\mathbb{C})\to \widehat{G}$ naturally and somewhat explicitly, and make a few conjectures on how $\widehat{\varphi}_X$ is related to $H$-distinguished representations of $G$. We will also show that the local Langlands parameter of the trivial representation of $G$ factors through $\widehat{\varphi}_X$ for any symmetric variety $X=H\backslash G$. Our group $\widehat{G}_X$ is different from the dual group by Sakellaridis-Venkatesh. However, we will show that our conjectures are consistent with various known examples and conjectures, especially in the framework of the theory of Kato-Takano on relative cuspidality and relative square integrability.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.