Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Graph Theory and its Uses in Graph Algorithms and Beyond (2308.15473v1)

Published 29 Aug 2023 in cs.DS and cs.CC

Abstract: Graphs are fundamental objects that find widespread applications across computer science and beyond. Graph Theory has yielded deep insights about structural properties of various families of graphs, which are leveraged in the design and analysis of algorithms for graph optimization problems and other computational optimization problems. These insights have also proved helpful in understanding the limits of efficient computation by providing constructions of hard problem instances. At the same time, algorithmic tools and techniques provide a fresh perspective on graph theoretic problems, often leading to novel discoveries. In this thesis, we exploit this symbiotic relationship between graph theory and algorithms for graph optimization problems and beyond. This thesis consists of three parts. In the first part, we study a graph routing problem called the Node-Disjoint Paths (NDP) problem. Given a graph and a set of source-destination pairs of its vertices, the goal is to route the maximum number of pairs via node-disjoint paths. We come close to resolving the approximability of NDP by showing that it is $n{\Omega(1/poly\log\log n)}$-hard to approximate, even on grid graphs, where n is the number of vertices. In the second part of this thesis, we use graph decomposition techniques developed for efficient algorithms to derive a graph theoretic result. We show that for every n-vertex expander graph G, if H is any graph with at most $O(n/\log n)$ vertices and edges, then H is a minor of G. In the last part, we show that the graph theoretic tools and graph algorithmic techniques can shed light on problems seemingly unrelated to graphs. We show that the randomized space complexity of the Longest Increasing Subsequence (LIS) problem in the streaming model is intrinsically tied to the query-complexity of the Non-Crossing Matching problem on graphs in a new model of computation that we define.

Summary

We haven't generated a summary for this paper yet.