Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improved Approximation for Node-Disjoint Paths in Planar Graphs (1603.05520v1)

Published 17 Mar 2016 in cs.DS

Abstract: We study the classical Node-Disjoint Paths (NDP) problem: given an $n$-vertex graph $G$ and a collection $M={(s_1,t_1),\ldots,(s_k,t_k)}$ of pairs of vertices of $G$ called demand pairs, find a maximum-cardinality set of node-disjoint paths connecting the demand pairs. NDP is one of the most basic routing problems, that has been studied extensively. Despite this, there are still wide gaps in our understanding of its approximability: the best currently known upper bound of $O(\sqrt n)$ on its approximation ratio is achieved via a simple greedy algorithm, while the best current negative result shows that the problem does not have a better than $\Omega(\log{1/2-\delta}n)$-approximation for any constant $\delta$, under standard complexity assumptions. Even for planar graphs no better approximation algorithms are known, and to the best of our knowledge, the best negative bound is APX-hardness. Perhaps the biggest obstacle to obtaining better approximation algorithms for NDP is that most currently known approximation algorithms for this type of problems rely on the standard multicommodity flow relaxation, whose integrality gap is $\Omega(\sqrt n)$ for NDP, even in planar graphs. In this paper, we break the barrier of $O(\sqrt n)$ on the approximability of the NDP problem in planar graphs and obtain an $\tilde O(n{9/19})$-approximation. We introduce a new linear programming relaxation of the problem, and a number of new techniques, that we hope will be helpful in designing more powerful algorithms for this and related problems.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Julia Chuzhoy (34 papers)
  2. David H. K. Kim (4 papers)
  3. Shi Li (71 papers)
Citations (26)

Summary

We haven't generated a summary for this paper yet.