Quantum Next Generation Reservoir Computing: An Efficient Quantum Algorithm for Forecasting Quantum Dynamics (2308.14239v2)
Abstract: Next Generation Reservoir Computing (NG-RC) is a modern class of model-free machine learning that enables an accurate forecasting of time series data generated by dynamical systems. We demonstrate that NG-RC can accurately predict full many-body quantum dynamics in both integrable and chaotic systems. This is in contrast to the conventional application of reservoir computing that concentrates on the prediction of the dynamics of observables. In addition, we apply a technique which we refer to as skipping ahead to predict far future states accurately without the need to extract information about the intermediate states. However, adopting a classical NG-RC for many-body quantum dynamics prediction is computationally prohibitive due to the large Hilbert space of sample input data. In this work, we propose an end-to-end quantum algorithm for many-body quantum dynamics forecasting with a quantum computational speedup via the block-encoding technique. This proposal presents an efficient model-free quantum scheme to forecast quantum dynamics coherently, bypassing inductive biases incurred in a model-based approach.
- H.-Y. Huang, S. Chen, and J. Preskill, Learning to predict arbitrary quantum processes (2023), arXiv:2210.14894 [quant-ph] .
- G. Carleo and M. Troyer, Science 355, 602 (2017).
- M. Schmitt and M. Heyl, Phys. Rev. Lett. 125, 100503 (2020).
- M. J. Hartmann and G. Carleo, Phys. Rev. Lett. 122, 250502 (2019).
- S. Aaronson, Nature Physics 11, 291 (2015).
- O. D. Matteo, V. Gheorghiu, and M. Mosca, IEEE Transactions on Quantum Engineering 1, 1 (2020).
- L. Gonon and J.-P. Ortega, IEEE Transactions on Neural Networks and Learning Systems 31, 100 (2020).
- A. G. Hart, J. L. Hook, and J. H. Dawes, Physica D: Nonlinear Phenomena 421, 132882 (2021).
- E. Bollt, Chaos: An Interdisciplinary Journal of Nonlinear Science 31, 013108 (2021).
- W. A. S. Barbosa and D. J. Gauthier, Chaos: An Interdisciplinary Journal of Nonlinear Science 32, 093137 (2022).
- S. B. Bravyi and A. Y. Kitaev, Annals of Physics 298, 210 (2002).
- A. Cervera-Lierta, Quantum 2, 114 (2018).
- K. Fujii and K. Nakajima, Physical Review Applied 8, 024030 (2017).
- A. Kutvonen, K. Fujii, and T. Sagawa, Scientific Reports 10, 14687 (2020).
- R. Martínez-Peña and J.-P. Ortega, Phys. Rev. E 107, 035306 (2023).
- H. Kawai and Y. O. Nakagawa, Machine Learning: Science and Technology 1, 045027 (2020).
- Y. Atia and D. Aharonov, Nature Communications 8, 1572 (2017).
- S. Gu, R. D. Somma, and B. Şahinoğlu, Quantum 5, 577 (2021).
- S. Chakraborty, A. Morolia, and A. Peduri, Quantum 7, 988 (2023).
- J. Karthik, A. Sharma, and A. Lakshminarayan, Phys. Rev. A 75, 022304 (2007).