Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Photonic next-generation reservoir computer based on distributed feedback in optical fiber (2404.07116v1)

Published 10 Apr 2024 in physics.optics and cs.ET

Abstract: Reservoir computing (RC) is a machine learning paradigm that excels at dynamical systems analysis. Photonic RCs, which perform implicit computation through optical interactions, have attracted increasing attention due to their potential for low latency predictions. However, most existing photonic RCs rely on a nonlinear physical cavity to implement system memory, limiting control over the memory structure and requiring long warm-up times to eliminate transients. In this work, we resolve these issues by demonstrating a photonic next-generation reservoir computer (NG-RC) using a fiber optic platform. Our photonic NG-RC eliminates the need for a cavity by generating feature vectors directly from nonlinear combinations of the input data with varying delays. Our approach uses Rayleigh backscattering to produce output feature vectors by an unconventional nonlinearity resulting from coherent, interferometric mixing followed by a quadratic readout. Performing linear optimization on these feature vectors, our photonic NG-RC demonstrates state-of-the-art performance for the observer (cross-prediction) task applied to the R\"ossler, Lorenz, and Kuramoto-Sivashinsky systems. In contrast to digital NG-RC implementations, this scheme is easily scalable to high-dimensional systems while maintaining low latency and low power consumption.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (69)
  1. D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-propagating errors,” Nature 323, 533–536 (1986).
  2. H. Jaeger and H. Haas, “Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication,” Science 304, 78–80 (2004).
  3. W. Maass, T. Natschläger, and H. Markram, “Real-Time Computing Without Stable States: A New Framework for Neural Computation Based on Perturbations,” Neural Computation 14, 2531–2560 (2002).
  4. C. Fernando and S. Sojakka, “Pattern Recognition in a Bucket,” in Advances in Artificial Life, Vol. 2801, edited by G. Goos, J. Hartmanis, J. Van Leeuwen, W. Banzhaf, J. Ziegler, T. Christaller, P. Dittrich, and J. T. Kim (Springer Berlin Heidelberg, Berlin, Heidelberg, 2003) pp. 588–597.
  5. F. Schürmann, K. Meier, and J. Schemmel, “Edge of Chaos Computation in Mixed-Mode VLSI - A Hard Liquid,” in Advances in Neural Information Processing Systems, Vol. 17, edited by L. Saul, Y. Weiss, and L. Bottou (MIT Press, 2004).
  6. L. Appeltant, M. Soriano, G. Van Der Sande, J. Danckaert, S. Massar, J. Dambre, B. Schrauwen, C. Mirasso, and I. Fischer, “Information processing using a single dynamical node as complex system,” Nature Communications 2, 468 (2011).
  7. Y. Paquot, F. Duport, A. Smerieri, J. Dambre, B. Schrauwen, M. Haelterman, and S. Massar, “Optoelectronic Reservoir Computing,” Scientific Reports 2, 287 (2012).
  8. L. Larger, M. C. Soriano, D. Brunner, L. Appeltant, J. M. Gutierrez, L. Pesquera, C. R. Mirasso, and I. Fischer, “Photonic information processing beyond Turing: An optoelectronic implementation of reservoir computing,” Optics Express 20, 3241 (2012).
  9. Y. K. Chembo, “Machine learning based on reservoir computing with time-delayed optoelectronic and photonic systems,” Chaos: An Interdisciplinary Journal of Nonlinear Science 30, 013111 (2020).
  10. R. Martinenghi, S. Rybalko, M. Jacquot, Y. K. Chembo, and L. Larger, “Photonic Nonlinear Transient Computing with Multiple-Delay Wavelength Dynamics,” Physical Review Letters 108, 244101 (2012).
  11. D. Brunner, B. Penkovsky, B. A. Marquez, M. Jacquot, I. Fischer, and L. Larger, “Tutorial: Photonic neural networks in delay systems,” Journal of Applied Physics 124, 152004 (2018).
  12. F. Duport, A. Smerieri, A. Akrout, M. Haelterman, and S. Massar, “Virtualization of a Photonic Reservoir Computer,” Journal of Lightwave Technology 34, 2085–2091 (2016a).
  13. F. Duport, A. Smerieri, A. Akrout, M. Haelterman, and S. Massar, “Fully analogue photonic reservoir computer,” Scientific Reports 6, 22381 (2016b).
  14. A. Dejonckheere, F. Duport, A. Smerieri, L. Fang, J.-L. Oudar, M. Haelterman, and S. Massar, “All-optical reservoir computer based on saturation of absorption,” Optics Express 22, 10868 (2014).
  15. T. L. Carroll and J. D. Hart, “Time shifts to reduce the size of reservoir computers,” Chaos: An Interdisciplinary Journal of Nonlinear Science 32, 083122 (2022).
  16. J. Vatin, D. Rontani, and M. Sciamanna, “Experimental reservoir computing using VCSEL polarization dynamics,” Optics Express 27, 18579 (2019).
  17. A. Argyris, J. Bueno, and I. Fischer, “Photonic machine learning implementation for signal recovery in optical communications,” Scientific Reports 8, 8487 (2018).
  18. R. M. Nguimdo, E. Lacot, O. Jacquin, O. Hugon, G. Van Der Sande, and H. Guillet De Chatellus, “Prediction performance of reservoir computing systems based on a diode-pumped erbium-doped microchip laser subject to optical feedback,” Optics Letters 42, 375 (2017).
  19. M. C. Soriano, S. Ortín, D. Brunner, L. Larger, C. R. Mirasso, I. Fischer, and L. Pesquera, “Optoelectronic reservoir computing: Tackling noise-induced performance degradation,” Optics Express 21, 12 (2013).
  20. S. Ortín, M. C. Soriano, L. Pesquera, D. Brunner, D. San-Martín, I. Fischer, C. R. Mirasso, and J. M. Gutiérrez, “A Unified Framework for Reservoir Computing and Extreme Learning Machines based on a Single Time-delayed Neuron,” Scientific Reports 5, 14945 (2015).
  21. K. Harkhoe, G. Verschaffelt, A. Katumba, P. Bienstman, and G. Van Der Sande, “Demonstrating delay-based reservoir computing using a compact photonic integrated chip,” Optics Express 28, 3086 (2020).
  22. K. Sozos, C. Mesaritakis, and A. Bogris, “Reservoir Computing Based on Mutually Injected Phase Modulated Semiconductor Lasers as a Monolithic Integrated Hardware Accelerator,” IEEE Journal of Quantum Electronics 57, 1–7 (2021).
  23. G. O. Danilenko, A. V. Kovalev, E. A. Viktorov, A. Locquet, D. S. Citrin, and D. Rontani, “Impact of filtering on photonic time-delay reservoir computing,” Chaos: An Interdisciplinary Journal of Nonlinear Science 33, 013116 (2023).
  24. G. Donati, C. R. Mirasso, M. Mancinelli, L. Pavesi, and A. Argyris, “Microring resonators with external optical feedback for time delay reservoir computing,” Optics Express 30, 522 (2022).
  25. T. Hülser, F. Köster, L. Jaurigue, and K. Lüdge, “Role of delay-times in delay-based photonic reservoir computing [Invited],” Optical Materials Express 12, 1214 (2022).
  26. M. Abdalla, C. Zrounba, R. Cardoso, P. Jimenez, G. Ren, A. Boes, A. Mitchell, A. Bosio, I. O’Connor, and F. Pavanello, “Minimum complexity integrated photonic architecture for delay-based reservoir computing,” Optics Express 31, 11610 (2023).
  27. L. Larger, A. Baylón-Fuentes, R. Martinenghi, V. S. Udaltsov, Y. K. Chembo, and M. Jacquot, “High-Speed Photonic Reservoir Computing Using a Time-Delay-Based Architecture: Million Words per Second Classification,” Physical Review X 7, 011015 (2017).
  28. Z. Liang, M. Zhang, C. Shi, and Z. R. Huang, “Real-time respiratory motion prediction using photonic reservoir computing,” Scientific Reports 13, 5718 (2023).
  29. K. Takano, C. Sugano, M. Inubushi, K. Yoshimura, S. Sunada, K. Kanno, and A. Uchida, “Compact reservoir computing with a photonic integrated circuit,” Optics Express 26, 29424 (2018).
  30. X. X. Guo, S. Y. Xiang, Y. H. Zhang, L. Lin, A. J. Wen, and Y. Hao, “Four-channels reservoir computing based on polarization dynamics in mutually coupled VCSELs system,” Optics Express 27, 23293 (2019).
  31. S. Ortín and L. Pesquera, “Reservoir Computing with an Ensemble of Time-Delay Reservoirs,” Cognitive Computation 9, 327–336 (2017).
  32. Y.-S. Hou, G.-Q. Xia, E. Jayaprasath, D.-Z. Yue, W.-Y. Yang, and Z.-M. Wu, “Prediction and classification performance of reservoir computing system using mutually delay-coupled semiconductor lasers,” Optics Communications 433, 215–220 (2019).
  33. L. Keuninckx, J. Danckaert, and G. Van Der Sande, “Real-time Audio Processing with a Cascade of Discrete-Time Delay Line-Based Reservoir Computers,” Cognitive Computation 9, 315–326 (2017).
  34. D.-Z. Yue, Z.-M. Wu, Y.-S. Hou, C.-X. Hu, Z.-F. Jiang, and G.-Q. Xia, “Reservoir Computing Based on Two Parallel Reservoirs Under Identical Electrical Message Injection,” IEEE Photonics Journal 13, 1–11 (2021).
  35. Y. Yang, P. Zhou, T. Chen, Y. Huang, and N. Li, “Optical neuromorphic computing based on a large-scale laterally coupled laser array,” Optics Communications 521, 128599 (2022).
  36. A. Bogris, C. Mesaritakis, S. Deligiannidis, and P. Li, “Fabry-Perot Lasers as Enablers for Parallel Reservoir Computing,” IEEE Journal of Selected Topics in Quantum Electronics 27, 1–7 (2021).
  37. U. Paudel, M. Luengo-Kovac, J. Pilawa, T. J. Shaw, and G. C. Valley, “Classification of time-domain waveforms using a speckle-based optical reservoir computer,” Optics Express 28, 1225 (2020).
  38. M. N. Ashner, U. Paudel, M. Luengo-Kovac, J. Pilawa, and G. C. Valley, “Photonic reservoir computer using speckle in multimode waveguide ring resonators,” Optics Express 29, 19262 (2021).
  39. P. Antonik, N. Marsal, and D. Rontani, “Large-Scale Spatiotemporal Photonic Reservoir Computer for Image Classification,” IEEE Journal of Selected Topics in Quantum Electronics 26, 1–12 (2020).
  40. M. Rafayelyan, J. Dong, Y. Tan, F. Krzakala, and S. Gigan, “Large-Scale Optical Reservoir Computing for Spatiotemporal Chaotic Systems Prediction,” Physical Review X 10, 041037 (2020).
  41. J. Bueno, S. Maktoobi, L. Froehly, I. Fischer, M. Jacquot, L. Larger, and D. Brunner, “Reinforcement learning in a large-scale photonic recurrent neural network,” Optica 5, 756 (2018).
  42. S. Sunada, K. Kanno, and A. Uchida, “Using multidimensional speckle dynamics for high-speed, large-scale, parallel photonic computing,” Optics Express 28, 30349 (2020).
  43. K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers, G. Morthier, D. Verstraeten, B. Schrauwen, J. Dambre, and P. Bienstman, “Experimental demonstration of reservoir computing on a silicon photonics chip,” Nature Communications 5, 3541 (2014).
  44. Q. Vinckier, F. Duport, A. Smerieri, K. Vandoorne, P. Bienstman, M. Haelterman, and S. Massar, “High-performance photonic reservoir computer based on a coherently driven passive cavity,” Optica 2, 438 (2015).
  45. M. Nakajima, M. Inubushi, T. Goh, and T. Hashimoto, “Coherently Driven Ultrafast Complex-Valued Photonic Reservoir Computing,” in Conference on Lasers and Electro-Optics (OSA, San Jose, California, 2018) p. SM1C.4.
  46. M. Nakajima, K. Tanaka, and T. Hashimoto, “Scalable reservoir computing on coherent linear photonic processor,” Communications Physics 4, 20 (2021).
  47. D. J. Gauthier, E. Bollt, A. Griffith, and W. A. S. Barbosa, “Next generation reservoir computing,” Nature Communications 12, 5564 (2021).
  48. W. A. S. Barbosa and D. J. Gauthier, “Learning spatiotemporal chaos using next-generation reservoir computing,” Chaos: An Interdisciplinary Journal of Nonlinear Science 32, 093137 (2022).
  49. D. J. Gauthier, I. Fischer, and A. Röhm, “Learning unseen coexisting attractors,” Chaos: An Interdisciplinary Journal of Nonlinear Science 32, 113107 (2022).
  50. R. M. Kent, W. A. S. Barbosa, and D. J. Gauthier, “Controlling chaotic maps using next-generation reservoir computing,” Chaos: An Interdisciplinary Journal of Nonlinear Science 34, 023102 (2024).
  51. B. Redding, J. B. Murray, J. D. Hart, Z. Zhu, S. S. Pang, and R. Sarma, “Fiber optic computing using distributed feedback,” Communications Physics 7, 75 (2024).
  52. Z. Lu, J. Pathak, B. Hunt, M. Girvan, R. Brockett, and E. Ott, “Reservoir observers: Model-free inference of unmeasured variables in chaotic systems,” Chaos: An Interdisciplinary Journal of Nonlinear Science 27, 041102 (2017).
  53. R. S. Zimmermann and U. Parlitz, “Observing spatio-temporal dynamics of excitable media using reservoir computing,” Chaos: An Interdisciplinary Journal of Nonlinear Science 28, 043118 (2018).
  54. A. Cunillera, M. C. Soriano, and I. Fischer, “Cross-predicting the dynamics of an optically injected single-mode semiconductor laser using reservoir computing,” Chaos: An Interdisciplinary Journal of Nonlinear Science 29, 113113 (2019).
  55. G. Neofotistos, M. Mattheakis, G. D. Barmparis, J. Hizanidis, G. P. Tsironis, and E. Kaxiras, “Machine Learning With Observers Predicts Complex Spatiotemporal Behavior,” Frontiers in Physics 7, 24 (2019).
  56. G. Barmparis, G. Neofotistos, M. Mattheakis, J. Hizanidis, G. Tsironis, and E. Kaxiras, “Robust prediction of complex spatiotemporal states through machine learning with sparse sensing,” Physics Letters A 384, 126300 (2020).
  57. N. A. K. Doan, W. Polifke, and L. Magri, “Learning Hidden States in a Chaotic System: A Physics-Informed Echo State Network Approach,” in Computational Science – ICCS 2020, Vol. 12142, edited by V. V. Krzhizhanovskaya, G. Závodszky, M. H. Lees, J. J. Dongarra, P. M. A. Sloot, S. Brissos, and J. Teixeira (Springer International Publishing, Cham, 2020) pp. 117–123.
  58. V. A. Pammi, M. G. Clerc, S. Coulibaly, and S. Barbay, “Extreme Events Prediction from Nonlocal Partial Information in a Spatiotemporally Chaotic Microcavity Laser,” Physical Review Letters 130, 223801 (2023).
  59. N. H. Packard, J. P. Crutchfield, J. D. Farmer, and R. S. Shaw, “Geometry from a Time Series,” Physical Review Letters 45, 712–716 (1980).
  60. O. Rössler, “An equation for continuous chaos,” Physics Letters A 57, 397–398 (1976).
  61. E. N. Lorenz, “Deterministic Nonperiodic Flow,” Journal of the Atmospheric Sciences 20, 130–141 (1963).
  62. Y. Kuramoto, “Diffusion-Induced Chaos in Reaction Systems,” Progress of Theoretical Physics Supplement 64, 346–367 (1978).
  63. G. Sivashinsky, “Nonlinear analysis of hydrodynamic instability in laminar flames—I. Derivation of basic equations,” Acta Astronautica 4, 1177–1206 (1977).
  64. A. Smerieri, F. Duport, Y. Paquot, B. Schrauwen, M. Haelterman, and S. Massar, “Analog readout for optical reservoir computers,” in Advances in Neural Information Processing Systems, Vol. 25, edited by F. Pereira, C. J. Burges, L. Bottou, and K. Q. Weinberger (Curran Associates, Inc., 2012).
  65. M. D. Mermelstein, R. Posey, G. A. Johnson, and S. T. Vohra, “Rayleigh scattering optical frequency correlation in a single-mode optical fiber,” Optics Letters 26, 58 (2001).
  66. S. Ma, T. M. Antonsen, S. M. Anlage, and E. Ott, “Short-wavelength reverberant wave systems for physical realization of reservoir computing,” Physical Review Research 4, 023167 (2022).
  67. Z. Lu, B. R. Hunt, and E. Ott, “Attractor reconstruction by machine learning,” Chaos: An Interdisciplinary Journal of Nonlinear Science 28, 061104 (2018).
  68. A. Griffith, A. Pomerance, and D. J. Gauthier, “Forecasting chaotic systems with very low connectivity reservoir computers,” Chaos: An Interdisciplinary Journal of Nonlinear Science 29, 123108 (2019).
  69. X. Wang, B. Redding, N. Karl, C. Long, Z. Zhu, S. Pang, D. Brady, and R. Sarma, “Integrated Photonic Encoder for Terapixel Image Processing,”  (2023), arxiv:2306.04554 [physics] .
Citations (4)

Summary

We haven't generated a summary for this paper yet.